ABSTRACT
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Subject(s)
Cell Movement , Doublecortin Protein , Neurogenesis , Neurons , Animals , Rats , Neurons/metabolism , Neurons/cytology , Male , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Hypothalamus/metabolism , Hypothalamus/cytology , Arginine Vasopressin/metabolismABSTRACT
The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.
Subject(s)
Cerebral Cortex , Macaca mulatta , Neurons , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Cerebral Cortex/metabolism , Animals , Mice , Neurons/metabolism , Chickens/genetics , Evolution, Molecular , TranscriptomeABSTRACT
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Subject(s)
Calcium , Neural Stem Cells , Calcium, Dietary , Cell Differentiation , Cell ProliferationABSTRACT
The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.
ABSTRACT
PURPOSE: In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS: Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS: Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION: Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Subject(s)
Cerebellar Neoplasms , Infratentorial Neoplasms , Microcephaly , Adolescent , Gene Expression , Humans , Infratentorial Neoplasms/diagnostic imaging , Infratentorial Neoplasms/genetics , Nerve Tissue Proteins/geneticsABSTRACT
Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors.