Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.814
Filter
1.
Cancer Metab ; 12(1): 20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978126

ABSTRACT

BACKGROUND: Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy). METHODS: Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H2O2. RESULTS: Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation. CONCLUSION: Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.

2.
Adv Sci (Weinh) ; : e2404131, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958560

ABSTRACT

Increasing evidence suggests the role of reactive oxygen and nitrogen species (RONS) in regulating antitumor immune effects and immunosuppression. RONS modify biomolecules and induce oxidative post-translational modifications (oxPTM) on proteins that can alarm phagocytes. However, it is unclear if and how protein oxidation by technical means could be a strategy to foster antitumor immunity and therapy. To this end, cold gas plasma technology producing various RONS simultaneously to oxidize the two melanoma-associated antigens MART and PMEL is utilized. Cold plasma-oxidized MART (oxMART) and PMEL (oxPMEL) are heavily decorated with oxPTMs as determined by mass spectrometry. Immunization with oxidized MART or PMEL vaccines prior to challenge with viable melanoma cells correlated with significant changes in cytokine secretion and altered T-cell differentiation of tumor-infiltrated leukocytes (TILs). oxMART promoted the activity of cytotoxic central memory T-cells, while oxPMEL led to increased proliferation of cytotoxic effector T-cells. Similar T-cell results are observed after incubating splenocytes of tumor-bearing mice with B16F10 melanoma cells. This study, for the first time, provides evidence of the importance of oxidative modifications of two melanoma-associated antigens in eliciting anticancer immunity.

3.
J Cell Mol Med ; 28(13): e18508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953556

ABSTRACT

Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.


Subject(s)
Antioxidants , Osteoporosis , Oxidative Stress , Reactive Oxygen Species , Tendinopathy , Humans , Osteoporosis/metabolism , Osteoporosis/therapy , Osteoporosis/drug therapy , Antioxidants/therapeutic use , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/pathology , Reactive Oxygen Species/metabolism , Animals
4.
ACS Chem Neurosci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979773

ABSTRACT

Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.

5.
Adv Healthc Mater ; : e2401227, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979866

ABSTRACT

Pain caused by lumbar disc herniation (LDH) severely compromises patients' quality of life. The combination of steroid and local anesthetics is routinely employed in clinics to alleviate LDH-induced pain. However, the approach only mediates transient efficacy and requires repeated and invasive lumbar epidural injections. Here a paravertebrally-injected multifunctional hydrogel that can efficiently co-load and controlled release glucocorticoid betamethasone and anesthetics ropivacaine for sustained anti-inflammation, reactive oxygen species (ROS)-removal and pain relief in LDH is presented. Betamethasone is conjugated to hyaluronic acid (HA) via ROS-responsive crosslinker to form amphiphilic polymer that self-assemble into particles with ropivacaine loaded into the core. Solution of drug-loaded particles and thermo-sensitive polymer rapidly forms therapeutic hydrogel in situ upon injection next to the herniated disc, thus avoiding invasive epidural injection. In a rat model of LDH, multifunctional hydrogel maintains the local drug concentration 72 times longer than free drugs and more effectively inhibits the expression of pro-inflammatory cytokines and pain-related molecules including cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Therapeutic hydrogel suppresses the LDH-induced pain in rats for 12 days while the equivalent dose of free drugs is only effective for 3 days. This platform is also applicable to ameliorate pain caused by other spine-related diseases.

6.
J Photochem Photobiol B ; 257: 112958, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38875890

ABSTRACT

The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750-1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.

7.
Cancer Sci ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877783

ABSTRACT

Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.

8.
Expert Opin Ther Targets ; 28(5): 357-373, 2024 May.
Article in English | MEDLINE | ID: mdl-38861226

ABSTRACT

INTRODUCTION: HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED: In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION: Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.


Subject(s)
Anemia, Sickle Cell , Hypoxia-Inducible Factor 1, alpha Subunit , Molecular Targeted Therapy , Neoplasms , Tumor Microenvironment , Humans , Anemia, Sickle Cell/physiopathology , Anemia, Sickle Cell/drug therapy , Neoplasms/pathology , Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Fetal Hemoglobin/metabolism , Neovascularization, Pathologic
9.
Int J Biol Sci ; 20(8): 3028-3045, 2024.
Article in English | MEDLINE | ID: mdl-38904022

ABSTRACT

Following the identification of specific epidermal growth factor receptor (EGFR)-activating mutations, gefitinib, one of the first-generation tyrosine kinase inhibitors (TKIs), has proven efficacious in targeting NSCLC that is driven by specific EGFR-activating mutations. However, most patients who initially respond to gefitinib, develop acquired resistance. In the current study, we devised a novel strategy to enhance the efficacy of gefitinib. We developed a simple and effective, nano-interrupter termed zeolitic imidazolate framework-8@Gefitinib@hyaluraonic nanoparticle (ZIF-8@G@HA NP). This nanoparticle was prepared by loading gefitinib onto a ZIF-8 nanoplatform followed by coating with hyaluronic acid (HA). The burst of Zn2+ release triggered by pH-sensitive degradation of ZIF-8@G@HA NPs was shown to enhance the efficacy of gefitinib in parental lung carcinoma HCC827 cells and overcame acquired gefitinib resistance in gefitinib drug resistant (GDR) HCC827 cells. We found that when treated with ZIF-8@G@HA NPs, Zn2+ acts synergistically with gefitinib via increased apoptosis in both parental and GDR HCC827 cells. Consistently, this in vitro activity was correlated with in vivo tumor growth inhibition. Interestingly, GDR cells were more sensitive to Zn2+ when compared with parental cells. We further found that ZIF-8 NPs overcame gefitinib resistance by triggering reactive oxygen species (ROS) generation and consequent cell cycle arrest at the G2/M phase, resulting in cancer cell apoptosis. Zn2+ was also found to block P-gp activity, facilitating the accumulation of gefitinib in GDR cells, thus enhancing the anti-tumor efficacy of gefitinib resulting in reversal of gefitinib resistance. Thus, this study offers a novel and promising strategy to surmount acquired gefitinib resistance via cell cycle arrest at the G2/M phase by facilitating gefitinib accumulation in GDR cells.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Gefitinib , Lung Neoplasms , Zinc , Gefitinib/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Animals , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Mice , Quinazolines/pharmacology , Quinazolines/therapeutic use , Nanoparticles/chemistry , Mice, Nude , Reactive Oxygen Species/metabolism , Zeolites/chemistry , Mice, Inbred BALB C
10.
Front Mol Neurosci ; 17: 1387481, 2024.
Article in English | MEDLINE | ID: mdl-38840778

ABSTRACT

Background: Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods: Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results: After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion: The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.

11.
J Physiol Sci ; 74(1): 35, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918702

ABSTRACT

BACKGROUND: The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+. METHODS: A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells. RESULTS: CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE. CONCLUSION: Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Carcinoma, Squamous Cell , Mouth Neoplasms , Reactive Oxygen Species , Smoke , Tobacco Products , Humans , Reactive Oxygen Species/metabolism , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Cell Line, Tumor , Smoke/adverse effects , Carcinoma, Squamous Cell/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Tobacco Products/adverse effects , Apoptosis/drug effects , Nicotiana/chemistry , Calcium/metabolism , Cell Survival/drug effects
12.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892302

ABSTRACT

Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.


Subject(s)
Apoptosis , Mitochondria , NADPH Oxidase 4 , Neurons , Particulate Matter , Reactive Oxygen Species , Particulate Matter/toxicity , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Cell Line, Tumor , Oxidative Stress/drug effects , Animals , Mice , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics
13.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842262

ABSTRACT

The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.

14.
Mol Biomed ; 5(1): 24, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937317

ABSTRACT

Chronic kidney disease (CKD) poses a significant global health dilemma, emerging from complex causes. Although our prior research has indicated that a deficiency in Reticulon-3 (RTN3) accelerates renal disease progression, a thorough examination of RTN3 on kidney function and pathology remains underexplored. To address this critical need, we generated Rtn3-null mice to study the consequences of RTN3 protein deficiency on CKD. Single-cell transcriptomic analyses were performed on 47,885 cells from the renal cortex of both healthy and Rtn3-null mice, enabling us to compare spatial architectures and expression profiles across 14 distinct cell types. Our analysis revealed that RTN3 deficiency leads to significant alterations in the spatial organization and gene expression profiles of renal cells, reflecting CKD pathology. Specifically, RTN3 deficiency was associated with Lars2 overexpression, which in turn caused mitochondrial dysfunction and increased reactive oxygen species levels. This shift induced a transition in renal epithelial cells from a functional state to a fibrogenic state, thus promoting renal fibrosis. Additionally, RTN3 deficiency was found to drive the endothelial-to-mesenchymal transition process and disrupt cell-cell communication, further exacerbating renal fibrosis. Immunohistochemistry and Western-Blot techniques were used to validate these observations, reinforcing the critical role of RTN3 in CKD pathogenesis. The deficiency of RTN3 protein in CKD leads to profound changes in cellular architecture and molecular profiles. Our work seeks to elevate the understanding of RTN3's role in CKD's narrative and position it as a promising therapeutic contender.


Subject(s)
Disease Progression , Fibrosis , Gene Expression Profiling , Renal Insufficiency, Chronic , Single-Cell Analysis , Animals , Mice , Fibrosis/pathology , Fibrosis/metabolism , Fibrosis/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Kidney/pathology , Kidney/metabolism , Transcriptome , Reactive Oxygen Species/metabolism , Epithelial-Mesenchymal Transition/genetics , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics
15.
Article in English | MEDLINE | ID: mdl-38831573

ABSTRACT

Lung cancer and tuberculosis (TB) are classified as the second-most life-threatening diseases globally. They both are exclusively represented as major public health risks and might exhibit similar symptoms, occasionally diagnosed simultaneously. Several epidemiological studies suggest that TB is a significant risk factor for the progression of lung cancer. The staggering mortality rates of pulmonary disorders are intrinsically connected to lung cancer and TB. Numerous factors play a pivotal role in the development of TB and may promote lung carcinogenesis, particularly among the geriatric population. Understanding the intricacies involved in the association between lung carcinogenesis and TB has become a crucial demand of current research. Consequently, this study aims to comprehensively review current knowledge on the relationship between tuberculosis-related inflammation and the emergence of lung carcinoma, highlighting the impact of persistent inflammation on lung tissue, immune modulation, fibrosis, aspects of reactive oxygen species, and an altered microenvironment that are linked to the progression of tuberculosis and subsequently trigger lung carcinoma.

16.
Pharmacol Rev ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866562

ABSTRACT

Nitric oxide (NO) from endothelial NO synthase (eNOS) importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NOS system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species which can transfer between proteins, partition into a hydrophobic phase, and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and non-classical pathways for NO generation in the cardiovascular system, and how these can be modulated for therapeutic purposes. Significance Statement After four decades of intensive research, questions persist about the transduction and control of NO synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Non-classical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.

17.
Methods Mol Biol ; 2832: 205-212, 2024.
Article in English | MEDLINE | ID: mdl-38869797

ABSTRACT

One of the major plant stress level indicators is reactive oxygen species (ROS). They have been known to play a central role in regulating plant responses to various environmental stresses. This book chapter specifically covers abiotic stress induced by a drought hormone abscisic acid and biotic stress induced by Pseudomonas syringe DC3000 on single cell-type guard cells. We describe in detail the measurement of ROS production starting from sample preparation to data analysis by fluorescence intensity acquisition using ImageJ software. We discussed the problems faced while performing the experiment and addressed how to overcome them by providing specific guidelines to ensure high quality repeatable data.


Subject(s)
Arabidopsis , Reactive Oxygen Species , Stress, Physiological , Reactive Oxygen Species/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Abscisic Acid/metabolism , Pseudomonas syringae
18.
Front Immunol ; 15: 1396827, 2024.
Article in English | MEDLINE | ID: mdl-38855102

ABSTRACT

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Subject(s)
Macrophages , Mitochondria , Phagocytosis , Pyroptosis , Transcription Factors , Animals , Mitochondria/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Immunomodulation , Reactive Oxygen Species/metabolism , Mice, Knockout , Glucocorticoids/pharmacology , Mice, Inbred C57BL , Salmonella typhimurium/immunology , Escherichia coli/immunology
20.
J Pharmacol Exp Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858090

ABSTRACT

Streptolysin O (SLO), a bacterial toxin produced by common hemolytic streptococci, including Streptococcus pyogenes and resident microbiota, may be associated with inflammation in the cardiovascular system. We previously reported that short-term treatment with SLO at relatively high concentrations (10-1000 ng/mL) diminished acetylcholine-induced, endothelial-dependent relaxation in a concentration-dependent manner. However, the vascular function effects of long-term exposure to SLO at lower concentrations are poorly understood. In this study, treatment of rat aorta with endothelium with SLO (0.1-10 ng/mL) for 72 h inhibited contractions in response to norepinephrine and phenylephrine in a concentration-dependent manner, and this effect was abolished by endothelium denudation. We also observed decreased endothelium-dependent relaxation in aorta treated with a lower concentration of SLO (10 ng/mL) for 72 h. Long-term treatment with SLO (10 ng/mL) increased the expression of iNOS in aorta with endothelium but not aorta without endothelium, and the SLO-induced decrease in contraction was restored by treatment with NOS inhibitors. Pharmacologic and gene-mutant analyses further indicated that SLO-induced vascular dysfunction and iNOS upregulation are mediated through the TLR4/NOX2/ROS/p38 MAPK pathways. In vivo SLO treatment (46.8 pg/kg/min) for 7 days also diminished vascular contraction and relaxation activity in aorta with endothelium. We concluded that long-term treatment with SLO inhibits vascular contractile responses, primarily due to increased iNOS expression in the endothelium through TLR4-mediated pathways. Our present results, together with those of our previous study, suggest that endothelial cells play a key role in the pathophysiologic changes in cardiovascular function associated with long-term exposure to SLO. Significance Statement In the present study, we showed that long-term exposure to streptococcal exotoxin SLO inhibits agonist-induced contraction in rat aorta with endothelium, driven primarily by elevated iNOS production via NOX2-mediated ROS production through TLR4 activation on endothelial cells. In vivo treatment with SLO for 7 days also diminished vascular contraction and relaxation, providing evidence of possible pathophysiologic roles of SLO in endothelium-dependent vascular homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...