Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Clin Rheumatol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235498

ABSTRACT

OBJECTIVE: This work aims to investigate whether RIP2 silencing in naive CD4+ T cells from lupus-prone mice impacts Th17 cell activity or differentiation in vitro. METHODS: Naive CD4+ T cells isolation from MRL/lpr mice's spleens. Three RNA interference target sequences of RIP2 were packaged with lentivirus and transfected into naive CD4+ T cells. The shRIP2 with the highest interference efficiency was selected and transfected into naive CD4+ T cells. Naive CD4+ T cells were cultured under conventional (TGF-ß1 and IL-6) and pathogenic (IL-6, IL-23, IL-1ß) differentiation environments, respectively. Then, RT-qPCR, Western blot or Flow Cytometry were used for measuring the amounts of RIP2 and IL-17 and the differentiation of Th17 cells in two settings. RESULTS: Under the conventional Th17 (cTh17) cell differentiation environment (TGF-ß1 and IL-6), RIP2 deficiency is linked to decreased IL-17A levels (1.00 ± 0.03 vs 0.80 ± 0.03) and attenuated cTh17 cell (2.46 ± 0.08 vs 0.78 ± 0.03) differentiation (all, P < 0.05). Under the pathogenic Th17 (pTh17) cell environment (IL-1ß, IL-23, IL-6), RIP2 deficiency is linked to elevated IL-17A levels (1.03 ± 0.05 vs 1.63 ± 0.07) and enhanced pTh17 cell (3.69 ± 0.19 vs 5.49 ± 0.10) differentiation (all, P < 0.05). CONCLUSION: Our data suggest that RIP2 inhibition induces preferential differentiation of naive CD4+ T cells to pathogenic Th17 cells, while being able to upregulate IL-17A levels in the context of pTh17 cell differentiation. Our study opens up new research areas to reveal the underlying mechanisms and potential therapeutic targets for the prevention and treatment of SLE patients. Key Points • Silencing of RIP2 in naive CD4+ T cells from lupus-prone mice promotes pathogenic Th17 (pTh17) cell differentiation and IL-17A production under pTh17 cell (IL-1ß, IL-23, and IL-6) conditions. • RIP2 deficiency in naive CD4+ T cells reduces conventional Th17 (cTh17) cell differentiation and IL-17A production under cTh17 cell (TGF-ß1 and IL-6) conditions. • RIP2-deficient naive CD4+ T cells preferentially differentiate towards pTh17 cells rather than cTh17 cells in vitro. • Inhibition of RIP2 may be involved in the development of SLE via effects on Th17/IL-17.

2.
Neurosurg Rev ; 47(1): 608, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271500

ABSTRACT

This study examines the emerging role of biomarkers in the prognosis and management of severe traumatic brain injury (sTBI). Key findings highlight the significance of serum RIP-3, STC1, Nrf2, and cerebrospinal fluid galectin-3 and cytokines in predicting disease severity, mortality, and functional outcomes in sTBI patients. Elevated levels of RIP-3 and STC1 were linked to poor prognosis and increased mortality, with RIP-3 associated with necroptosis and inflammation, and STC1 with neuroprotective properties. Nrf2 was found to correlate with oxidative stress and adverse outcomes, while elevated CSF galectin-3 and IL-6 indicated neuroinflammation and neurodegeneration. These biomarkers show promise not only as prognostic tools but also as potential therapeutic targets. The study suggests further validation through multicenter research to enhance clinical applications and improve treatment strategies for sTBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , Humans , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/therapy , Prognosis
3.
Proc Natl Acad Sci U S A ; 121(40): e2410628121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39316049

ABSTRACT

One of the most critical axes for cell fate determination is how cells respond to excessive reactive oxygen species (ROS)-oxidative stress. Extensive lipid peroxidation commits cells to death via a distinct cell death paradigm termed ferroptosis. However, the molecular mechanism regulating cellular fates to distinct ROS remains incompletely understood. Through siRNA against human receptor-interacting protein kinase (RIPK) family members, we found that RIPK4 is crucial for oxidative stress and ferroptotic death. Upon ROS induction, RIPK4 is rapidly activated, and the kinase activity of RIPK4 is indispensable to induce cell death. Specific ablation of RIPK4 in kidney proximal tubules protects mice from acute kidney injury induced by cisplatin and renal ischemia/reperfusion. RNA sequencing revealed the dramatically decreased expression of acyl-CoA synthetase medium-chain (ACSM) family members induced by cisplatin treatment which is compromised in RIPK4-deficient mice. Among these ACSM family members, suppression of ACSM1 strongly augments oxidative stress and ferroptotic cell death with induced expression of ACS long-chain family member 4, an important component for ferroptosis execution. Our lipidome analysis revealed that overexpression of ACSM1 leads to the accumulation of monounsaturated fatty acids, attenuation of polyunsaturated fatty acid (PUFAs) production, and thereby cellular resistance to ferroptosis. Hence, knockdown of ACSM1 resensitizes RIPK4 KO cells to oxidative stress and ferroptotic death. In conclusion, RIPK4 is a key player involved in oxidative stress and ferroptotic death, which is potentially important for a broad spectrum of human pathologies. The link between the RIPK4-ASCM1 axis to PUFAs and ferroptosis reveals a unique mechanism to oxidative stress-induced necrosis and ferroptosis.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Oxidative Stress , Reactive Oxygen Species , Animals , Ferroptosis/genetics , Mice , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Humans , Reactive Oxygen Species/metabolism , Cisplatin/pharmacology , Down-Regulation , Mice, Knockout , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Cell Death , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
4.
Sci Rep ; 14(1): 21625, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39285232

ABSTRACT

Lung cancer remains the leading cause of cancer death. Treatment with immune checkpoint inhibitor (ICI) alone or combination with chemotherapy served as first-line therapy in non-small cell lung cancer (NSCLC). However, only 20-50% of NSCLC patients respond to ICI. Necroptosis, an inflammatory form of cell death plays an important role in the regulation of tumor immune microenvironment which may affect prognosis and ICI response but its clinical significance in NSCLC patients has remained largely unknown. Therefore, we aimed to analyze the correlation between key necroptotic proteins and necroptosis and clinical outcomes, the status of tumor-infiltrating immune cells, and response to ICI in NSCLC patients. The expression of receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like protein (MLKL) and phosphorylated MLKL (pMLKL) were immunolocalized in 125 surgically resected NSCLC patients and 23 NSCLC patients administered with ICI therapy. CD8 + and FOXp3 + T cells and CD163 + M2 macrophages were also immunolocalized. High RIPK3 status was positively correlated with survival of the patients and RIPK3 turned out an independent favorable prognostic factor of the patients. RIPK3 was negatively correlated with CD8 + T cells, while MLKL positively correlated with CD163 + M2 macrophages, suggesting the possible involvement of RIPK3 and MLKL in formulating immunosuppressive microenvironment. In addition, high RIPK3 status tended to be associated with clinical resistance to ICI therapy (P-value = 0.057). Furthermore, NSCLC cells-expressing RIPK3 suppressed T cells response to ICI therapy in vitro. Therefore, RIPK3 and MLKL could induce an immunosuppressive microenvironment, resulting in low response to ICI therapy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Tumor Microenvironment , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Necroptosis/drug effects , Prognosis , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
5.
Neurosurg Rev ; 47(1): 433, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141133

ABSTRACT

Receptor-interacting protein kinase-3 (RIP-3) is a key component for inducing necroptosis following acute brain injury. Purpose of this study is to unveil whether serum RIP-3 levels are related to severity and clinical outcomes after human severe traumatic brain injury (sTBI). In this two-center prospective cohort study, serum RIP-3 levels were detected in 127 healthy controls coupled with 127 sTBI patients. The prognostic indicators encompassed posttraumatic 180-day mortality, overall survival and poor prognosis (defined as extended Glasgow outcome scale scores of 1-4). The prognosis associations were verified via multivariate analysis. There was a significant incremental serum RIP-3 levels in patients with sTBI, relative to the controls. RIP-3 levels of patients were independently correlated with Rotterdam Computed Tomography (CT) scores and Glasgow coma scale (GCS) scores, as well as were independently predictive of mortality, overall survival and poor prognosis. Mortality and poor prognosis were effectively predicted by serum RIP-3 levels under the receiver operating characteristic curve. Linear relationships between RIP-3 levels and their risks were verified. Mortality and poor prognosis models of serum RIP-3 levels combined with GCS and Rotterdam CT scores displayed efficient predictive abilities. The two models were graphically represented, which were of clinical stability and value by employing the calibration and decision curves. Increased serum RIP-3 levels after sTBI are closely linked to heightened trauma severity and poor prognosis, signifying that serum RIP-3 may be an encouraging biomarker for evaluating severity and predicting clinical outcome of sTBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Male , Female , Middle Aged , Prognosis , Adult , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/diagnosis , Biomarkers/blood , Prospective Studies , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Aged , Glasgow Coma Scale , Cohort Studies , Young Adult
6.
Arch Pharm (Weinheim) ; 357(10): e2400302, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38955770

ABSTRACT

Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.


Subject(s)
Drug Discovery , Molecular Docking Simulation , Necroptosis , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases , Necroptosis/drug effects , Animals , Humans , Structure-Activity Relationship , Rats , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Molecular Structure , Molecular Dynamics Simulation , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis
7.
Clin Chim Acta ; 562: 119850, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38977167

ABSTRACT

OBJECTIVE: The receptor-interacting protein kinase 3 (RIPK3) is a pivotal component for triggering necroptosis. We intended to investigate predictive effects of serum RIPK3 levels on early hematoma growth (EHG) and poor neurological outcome after acute intracerebral hemorrhage (ICH). METHODS: In this prospective cohort study, 183 ICH patients and 100 controls were enrolled for measuring serum RIPK3 levels. National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were recorded as the severity indicators. EHG and poststroke 6-month unfavorable outcome (modified Rankin Scale scores of 3-6) were registered as the two prognostic parameters. Multivariate analyses were implemented to discern relevance of serum RIPK3 to ICH severity and prognosis. RESULTS: Serum RIPK3 levels of patients, which were dramatically higher than those of controls, were independently related to NIHSS scores, hematoma volume, EHG, 6-month mRS scores and unfavorable outcome. Risks of EHG and unfavorable outcome were linearly pertinent to and efficiently discriminated by RIPK3 levels under restricted cubic spline and receiver operating characteristic curve respectively. RIPK3 levels nonsignificantly interacted with age, gender, hypertension, etc. Predictive ability of RIPK3 levels resembled those of NIHSS scores and hematoma volume. The prediction models, in which serum RIPK3, NIHSS scores and hematoma volume were integrated, were visually displayed via nomograms. The models' predictive capabilities substantially surpassed that of serum RIPK3, NIHSS scores and hematoma volumes alone. The models kept stable under calibration curve. CONCLUSION: A profound increase of serum RIPK3 levels after ICH is tightly relevant to severity, EHG and poor neurological outcomes, assuming that serum RIPK3 may emerge as a valuable prognostic predictor of ICH.


Subject(s)
Biomarkers , Cerebral Hemorrhage , Hematoma , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Male , Prospective Studies , Female , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnosis , Biomarkers/blood , Middle Aged , Aged , Hematoma/blood , Hematoma/diagnosis , Acute Disease , Cohort Studies , Prognosis
8.
Adv Healthc Mater ; : e2400240, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081097

ABSTRACT

Necroptosis, a cell death mechanism with the characteristics of both apoptosis and necrosis, is proposed as a promising therapeutic approach for cancer therapy. Induction of necroptosis for cancer therapy may be possible through the regulation of the expression of a key factor gene receptor-interacting protein kinase-3 (RIPK3) via in vitro transcription (IVT) mRNA delivery. However, mRNA is susceptible to degradation and has a low delivery efficiency, which highlights the requirement of a proper delivery vehicle for intracellular delivery. Therefore, a new mRNA delivery system based on the nanostructured silica nanoparticles, termed mRNA-protective nanocage (mPN) has been developed. High-efficiency expression of RIPK3 and induction of necroptosis is achieved through delivery of RIPK3 IVT mRNA with mPN in vitro and in vivo models. Importantly, the mPN carrying RIPK3 mRNA distributed locally in tumors upon intravascular injection, and successfully induced necroptosis and immune cell infiltration, a hallmark of necroptosis. the suppression of tumor growth in a murine cancer model, demonstrating the synergistic effect of RIPK3 mRNA- and immune cell-mediated therapy is also observed. These findings suggest the potential for anticancer therapy through necroptosis induction and provide a strategy for the development of mRNA-based nanomedicine.

9.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Article in English | MEDLINE | ID: mdl-38801575

ABSTRACT

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Subject(s)
Interferon Type I , Viral Proteins , Humans , Animals , Interferon Type I/immunology , Interferon Type I/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Monkeypox virus/drug effects , Monkeypox virus/physiology , Monkeypox virus/genetics , Immunity, Innate , Necroptosis/drug effects , Signal Transduction/drug effects , Mpox (monkeypox)/virology
10.
Pediatr Surg Int ; 40(1): 115, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696138

ABSTRACT

OBJECTIVE: This study aimed to evaluate the role of receptor-interacting protein kinase-3 (RIPK3) in the diagnosis, estimation of disease severity, and prognosis of premature infants with necrotising enterocolitis (NEC). METHODS: RIPK3, lactic acid (LA), and C-reactive protein (CRP) levels were measured in the peripheral blood of 108 premature infants between 2019 and 2023, including 24 with stage II NEC, 18 with stage III NEC and 66 controls. Diagnostic values of the indicators for NEC were evaluated via receiver operating characteristic (ROC) curve analysis. RESULTS: Plasma RIPK3 and LA levels upon NEC suspicion in neonates with stage III NEC were 32.37 ± 16.20 ng/mL. The ROC curve for the combination of RIPK3, LA, CRP for NEC diagnosis were 0.925. The time to full enteral feeding (FEFt) after recovery from NEC was different between two expression groups of plasma RIPK3 (RIPK3 < 20.06 ng/mL and RIPK3 ≥ 20.06 ng/mL). CONCLUSION: Plasma RIPK3 can be used as a promising marker for the diagnosis and estimation of disease severity of premature infants with NEC and for the guidance on proper feeding strategies after recovery from NEC.


Subject(s)
Biomarkers , Enterocolitis, Necrotizing , Infant, Premature , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Enterocolitis, Necrotizing/blood , Enterocolitis, Necrotizing/diagnosis , Infant, Newborn , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Biomarkers/blood , Male , Female , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Prognosis , ROC Curve , Severity of Illness Index , Infant, Premature, Diseases/blood , Infant, Premature, Diseases/diagnosis , Case-Control Studies , Lactic Acid/blood
11.
Int Immunopharmacol ; 133: 112060, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652970

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by lung tissue oedema and inflammatory cell infiltration, with limited therapeutic interventions available. Receptor-interacting protein kinase 1 (RIPK1), a critical regulator of cell death and inflammation implicated in many diseases, is not fully understood in the context of ARDS. In this study, we employed RIP1 kinase-inactivated (Rip1K45A/K45A) mice and two distinct RIPK1 inhibitors to investigate the contributions of RIP1 kinase activity in lipopolysaccharide (LPS)-induced ARDS pathology. Our results indicated that RIPK1 kinase inactivation, achieved through both genetic and chemical approaches, significantly attenuated LPS-induced ARDS pathology, as demonstrated by reduced polymorphonuclear neutrophil percentage (PMN%) in alveolar lavage fluid, expression of inflammatory and fibrosis-related factors in lung tissues, as well as histological examination. Results by tunnel staining and qRT-PCR analysis indicated that RIPK1 kinase activity played a role in regulating cell apoptosis and inflammation induced by LPS administration in lung tissue. In summary, employing both pharmacological and genetic approaches, this study demonstrated that targeted RIPK1 kinase inactivation attenuates the pathological phenotype induced by LPS inhalation in an ARDS mouse model. This study enhances our understanding of the therapeutic potential of RIPK1 kinase modulation in ARDS, providing insights for the pathogenesis of ARDS.


Subject(s)
Lipopolysaccharides , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Respiratory Distress Syndrome , Animals , Humans , Male , Mice , Apoptosis/drug effects , Disease Models, Animal , Lung/pathology , Lung/drug effects , Lung/immunology , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology
12.
Aesthetic Plast Surg ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532201

ABSTRACT

BACKGROUND: Autologous fat transplantation, widely used in cosmetic and reparative surgery for volumetric enhancements, faces challenges with its inconsistent long-term survival rates. The technique's efficacy, crucial for its development, is hindered by unpredictable outcomes. Enriching fat grafts with adipose-derived stem cells (ADSCs) shows promise in improving survival efficiency. OBJECTIVES: This study aimed to explore the potential of receptor-interacting protein kinase 3 (RIP3) kinase inhibitors as a pretreatment for ADSCs in enhancing autologous fat graft retention over a long term. METHODS: ADSCs were isolated, cultured under normal or oxygen-glucose deprivation conditions, and mixed with particulate fat grafts to form distinct experimental groups in female nude mice. Fat graft mass and volume, along with underlying mechanisms, were evaluated using quantitative reverse transcription polymerase chain reaction (RT-qPCR), immunohistochemistry, and Western blot analysis. RESULTS: The experimental group, pretreated with RIP3 kinase inhibitors, had higher graft mass and volume, greater adipocyte integrity, and increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA levels than control groups. Furthermore, the experimental group demonstrated lower expression of necroptosis pathway proteins in the short term and an ameliorated inflammatory response as indicated by interleukin-1 beta (IL-1ß), interleukin-10 (IL-10) mRNA levels, and histological analyses. Notably, enhanced neovascularization was evident in the experimental group. CONCLUSIONS: These findings suggest that RIP3 kinase inhibitor pretreatment of ADSCs can improve fat graft survival, promote adipocyte integrity, potentially decrease inflammation, and enhance neovascularization. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

13.
Adv Exp Med Biol ; 1444: 129-143, 2024.
Article in English | MEDLINE | ID: mdl-38467977

ABSTRACT

Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/ß, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.


Subject(s)
Apoptosis , Necroptosis , Humans , Necrosis/metabolism , Apoptosis/physiology , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
14.
ESC Heart Fail ; 11(4): 2438-2441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38509849

ABSTRACT

AIMS: As necroptosis involving receptor-interacting protein kinase 3 (RIP3) and dynamin-related protein 1 (Drp1)-mediated signalling is a crucial mechanism of cell loss in heart failure (HF), we aimed to determine the potential diagnostic use of these molecules. METHODS AND RESULTS: The serum samples of the healthy subjects (n = 8) and patients with HF with reduced ejection fraction (n = 31), being subdivided according to the aetiology and New York Heart Association (NYHA) class, were used to measure RIP3 and Drp1 levels by enzyme-linked immunosorbent assay. Although the serum levels of Drp1 in the patients with HF were comparable with those seen in healthy individuals, we found a trend of increase in the levels of RIP3 (P = 0.0697) in the diseased group. These changes were unlikely dependent on the HF aetiology or NYHA class. The circulating RIP3 correlated with neither the main parameters assessing cardiac function (left ventricular ejection fraction, left ventricular end-diastolic diameter, and N-terminal pro-brain natriuretic peptide) nor the marker of inflammation (C-reactive protein). CONCLUSIONS: In this pilot study, findings on serum RIP3 supported the importance of necroptosis in HF pathomechanisms. The potential diagnostic use of circulating RIP3, unlike Drp1, as an additional biomarker of HF has also been indicated; however, further large studies are needed to prove this concept.


Subject(s)
Biomarkers , Dynamins , Heart Failure , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Heart Failure/blood , Heart Failure/diagnosis , Heart Failure/physiopathology , Male , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Female , Dynamins/blood , Biomarkers/blood , Middle Aged , Aged , Stroke Volume/physiology , Pilot Projects , Enzyme-Linked Immunosorbent Assay , Ventricular Function, Left/physiology
15.
Biomed Pharmacother ; 171: 116161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244330

ABSTRACT

Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.


Subject(s)
Exosomes , Hepatitis, Autoimmune , Humans , Animals , Mice , Exosomes/metabolism , Macrophages/metabolism , Cytokines/metabolism , RNA, Small Interfering/metabolism , Immunotherapy
16.
Neurochem Res ; 49(2): 245-257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37743445

ABSTRACT

Traumatic brain injury (TBI) is a global public safety issue that poses a threat to death, characterized by high fatality rates, severe injuries and low recovery rates. There is growing evidence that necroptosis regulates the pathophysiological processes of a variety of diseases, particularly those affecting the central nervous system. Thus, moderate necroptosis inhibition may be helpful in the management of TBI. Receptor-interacting protein kinase (RIP) 3 is a key mediator in the necroptosis, and its absence helps restore the microenvironment at the injured site and improve cognitive impairment after TBI. In this report, we review different domains of RIP3, multiple analyses of necroptosis, and associations between necroptosis and TBI, RIP3, RIP1, and mixed lineage kinase domain-like. Next, we elucidate the potential involvement of RIP3 in TBI and highlight how RIP3 deficiency enhances neuronal function.


Subject(s)
Apoptosis , Brain Injuries, Traumatic , Humans , Apoptosis/physiology , Necroptosis , Central Nervous System/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Necrosis
17.
CNS Neurosci Ther ; 30(1): e14397, 2024 01.
Article in English | MEDLINE | ID: mdl-37553782

ABSTRACT

BACKGROUND: Necroptosis induced by receptor-interacting protein kinase 3 (RIPK3) is engaged in intracerebral hemorrhage (ICH) pathology. In this study, we explored the impact of RIPK3 activation on neuronal necroptosis and the mechanism of the death domain-associated protein (DAXX)-mediated nuclear necroptosis pathway after ICH. METHODS: Potential molecules linked to the progression of ICH were discovered using RNA sequencing. The level of DAXX was assessed by quantitative real-time PCR, ELISA, and western blotting. DAXX localization was determined by immunofluorescence and immunoprecipitation assays. The RIPK3 inhibitor GSK872 and DAXX knockdown with shRNA-DAXX were used to examine the nuclear necroptosis pathway associated with ICH. Neurobehavioral deficit assessments were performed. RESULTS: DAXX was increased in patients and mice after ICH. In an ICH mouse model, shRNA-DAXX reduced brain water content and alleviated neurologic impairments. GSK872 administration reduced the expression of DAXX. shRNA-DAXX inhibited the expression of p-MLKL. Immunofluorescence and immunoprecipitation assays showed that RIPK3 and AIF translocated into the nucleus and then bound with nuclear DAXX. CONCLUSIONS: RIPK3 revitalization promoted neuronal necroptosis in ICH mice, partially through the DAXX signaling pathway. RIPK3 and AIF interacted with nuclear DAXX to aggravate ICH injury.


Subject(s)
Necroptosis , Protein Kinases , Animals , Humans , Mice , Brain/metabolism , Cerebral Hemorrhage , Co-Repressor Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics
18.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008339

ABSTRACT

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Subject(s)
Inflammation , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Signal Transduction , Humans , Inflammation/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
19.
Front Immunol ; 14: 1274654, 2023.
Article in English | MEDLINE | ID: mdl-37954576

ABSTRACT

Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Diabetic Nephropathies , Humans , Inflammation/drug therapy , Inflammation/metabolism , Diabetes Complications/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Threonine , Serine , Diabetes Mellitus/drug therapy , Diabetes Mellitus/etiology
20.
Geroscience ; 45(6): 3241-3256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792157

ABSTRACT

To study the impact of necroptosis-induced chronic inflammation on age-related diseases and aging, two knockin mouse models (Ripk3-KI and Mlkl-KI) were generated that overexpress two genes involved in necroptosis (Ripk3 or Mlkl) when crossed to Cre transgenic mice. Crossing Ripk3-KI or Mlkl-KI mice to albumin-Cre transgenic mice produced hepatocyte specific hRipk3-KI or hMlkl-KI mice, which express the two transgenes only in the liver. Ripk3 and Mlkl proteins were overexpressed 10- and fourfold, respectively, in the livers of the hRipk3-KI or hMlkl-KI mice. Treating young (2-month) hRipk3-KI or hMlkl-KI mice with carbon tetrachloride (CCl4), a chemical inducer of oxidative stress, resulted in increased necroptosis (Mlkl-oligomers) and inflammation in the liver compared to control mice receiving CCl4. Mlkl-oligomerization also was significantly increased in old (18-month) hRipk3-KI and hMlkl-KI mice compared to old control (Cre negative, Ripk3-KI and Mlkl-KI) mice. The increase in necroptosis was associated with an increase in inflammation, e.g., inflammatory cytokines (TNFα, IL-6) and macrophage markers (F4/80, CD68). Importantly, steatosis (triglycerides) and fibrosis (e.g., picrosirius red staining, hydroxyproline levels, and transcripts for TGFß, Col1α1, and Col3α1) that increase with age were significantly higher in the livers of the old hRipk3-KI or hMlkl-KI mice compared to old control mice. In addition, markers of cellular senescence were significantly increased in the livers of the old hRipk3-KI and hMlkl-KI mice. Thus, the first mouse models have been developed that allow researchers to study the impact of inducing necroptosis in specific cells/tissues on chronic inflammation in aging and age-related diseases.


Subject(s)
Necroptosis , Protein Kinases , Mice , Animals , Protein Kinases/genetics , Inflammation , Aging , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL