Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.737
Filter
1.
Indian J Microbiol ; 64(2): 558-571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011016

ABSTRACT

Cotton leaf curl disease (CLCuD), caused by the Cotton leaf curl virus, is one of the most irrepressible diseases in cotton due to high recombination in the virus. RNA interference (RNAi) is widely used as a biotechnological approach for sequence-specific gene silencing guided by small interfering RNAs (siRNAs) to generate resistance against viruses. The success of RNAi depends upon the fact that the target site of the designed siRNA must be conserved even if the genome undergoes recombination. Thus, the present study designs the most efficient siRNA against the conserved sites of the Cotton leaf curl Multan virus (CLCuMuV) and the Cotton leaf curl Multan betasatellite (CLCuMB). From an initial prediction of 9 and 7 siRNAs against CLCuMuV and CLCuMB, respectively, the final selection was made for 2 and 1 siRNA based on parameters such as no off-targets, good GC content, high validity score, and targeting coding region. The target sites of siRNA were observed to lie in the AC3 and an overlapping region of AC2-AC1 of CLCuMuV and ßC1 of CLCuMB; all target sites showed a highly conserved nature in recombination analysis. Docking the designed siRNAs with the Argonaute-2 protein of Gossypium hirsutum showed stable binding. Finally, BLASTn of siRNA-target positions in genomes of other BGVs indicated the suitability of designed siRNAs against a broad range of BGVs. The designed siRNAs of the present study could help gain complete control over the virus, though experimental validation is highly required to suggest predicted siRNAs for CLCuD resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01191-z.

2.
Food Chem ; 459: 140335, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981383

ABSTRACT

The characteristic aroma compounds of traditional braised pork were investigated by gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor-activity values, and aroma recombination and omission experiments. A total of 56 volatile compounds were detected by GC-MS, among which hexanal, octanal, nonanal, (E)-2-octenal, 2,3-octanedione, 1-octen-3-ol, 2-pentylfuran, methanethiol, and dimethyl trisulfide were identified as the key aroma compounds by molecular sensory science. Partial least squares regression analysis indicated that some aroma compounds significantly contributed to fatty (hexanal, heptanal, 2-pentylfuran, nonanal, and (E)-2-octenal), meaty (methanethiol, dimethyl disulfide, dimethyl trisulfide, and octanal), sauce-like flavor (3-hydroxy-2-butanone and 2-furfural), and sweet, caramel (2,3-octanedione, 1-octen-3-ol). Lean meat produced more aldehydes, alcohols, ketones, and sulfur-containing compounds than subcutaneous fat. The seasonings (saccharose, cooking wine, and soy sauce) facilitated the formation of ethyl L-lactate, 2-acetylfuran, 2-furfural, 5-methyl-2-furaldehyde, 2-methyl-pyrazine, and 2-acetylpyrrole. Meanwhile they reduced the content of lipid oxidation products, thereby stimulated the characteristic aroma of the Chinese traditional braised pork.

3.
Phys Med Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981588

ABSTRACT

OBJECTIVE: Clinical applications of FLASH radiotherapy require formulas to describe how the FLASH radiation features and other related factors determine the FLASH effect. Mathematical analysis of the models can connect the theoretical hypotheses with the radiobiological effect, which provides the foundation for establishing clinical application models. Moreover, experimental and clinical data can be used to explore the key factors through mathematical analysis. Approach: We abstract the complex models of the oxygen depletion hypothesis and radical recombination-antioxidants hypothesis into concise mathematical equations. The equations are solved to analyze how the radiation features and other factors influence the FLASH effect. Then we propose methodologies for determining the parameters in the models and utilizing the models to predict the FLASH effect. Main results: The formulas linking the physical, chemical and biological factors to the FLASH effect are obtained through mathematical derivation of the equation. The analysis indicates that the initial oxygen concentration, radiolytic oxygen consumption and oxygen recovery are key factors for the oxygen depletion hypothesis and that the level of antioxidants is the key factor for the radical recombination-antioxidants hypothesis. According to the model derivations and analysis, the methodologies for determining parameters and predicting the FLASH effect are proposed: the criteria for data filtration; the strategy of hybrid FLASH and conventional dose rate (CONV) irradiation to ensure the acquisition of effective experimental data across a wide dose range; pipelines of fitting parameters and predicting the FLASH effect. Significance: This study establishes the quantitative relationship between the FLASH effect and key factors. The derived formulas can be used to calculate the FLASH effect in future clinical FLASH radiotherapy. The proposed methodologies guide to obtain sufficient high-quality datasets and utilize them to predict FLASH effect. Furthermore, this study indicates the key factors of FLASH effect and offers clues to further explore the FLASH mechanism.

4.
Trends Cancer ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004561

ABSTRACT

In recent years, various poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been approved for the treatment of several cancers to target the vulnerability of homologous recombination (HR) deficiency (e.g., due to BRCA1/2 dysfunction). In this review we analyze the ongoing debates and recent breakthroughs in the use of PARPis for BRCA1/2-deficient cancers, juxtaposing the 'double-strand break (DSB)' and 'single-stranded DNA (ssDNA) gap' models of synthetic lethality induced by PARPis. We spotlight the complexity of this interaction, highlighting emerging research on the role of DNA polymerase theta (POLθ) and ssDNA gaps in shaping therapy responses. We scrutinize the clinical ramifications of these findings, especially concerning PARPi efficacy and resistance mechanisms, underscoring the heterogeneity of BRCA-mutated tumors and the urgent need for advanced research to bridge the gap between laboratory models and patient outcomes.

5.
Genetics ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005070

ABSTRACT

The conserved Rad2/XPG family 5'-3' exonuclease, Exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double strand breaks (DSBs) via homologous recombination. Prior studies provided evidence that the end-resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here we provide evidence that the master meiotic kinase Mek1, a paralogue of Rad53, limits 5'-3' single strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53.

6.
Front Immunol ; 15: 1445756, 2024.
Article in English | MEDLINE | ID: mdl-39007136

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2024.1405022.].

7.
Methods Mol Biol ; 2829: 21-48, 2024.
Article in English | MEDLINE | ID: mdl-38951325

ABSTRACT

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Subject(s)
Baculoviridae , Genetic Vectors , Recombinant Proteins , Baculoviridae/genetics , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Genetic Vectors/genetics , Sf9 Cells , Gene Expression , Humans , Insecta/genetics , Spodoptera , Cell Line , Homologous Recombination , Cost-Benefit Analysis
8.
Methods Mol Biol ; 2829: 13-20, 2024.
Article in English | MEDLINE | ID: mdl-38951324

ABSTRACT

The success of using the insect cell-baculovirus expression technology (BEST) relies on the efficient construction of recombinant baculovirus with genetic stability and high productivity, ideally within a short time period. Generation of recombinant baculoviruses requires the transfection of insect cells, harvesting of recombinant baculovirus pools, isolation of plaques, and the expansion of baculovirus stocks for their use for recombinant protein production. Moreover, many options exist for selecting the genetic elements to be present in the recombinant baculovirus. This chapter describes the most commonly used homologous recombination systems for the production of recombinant baculoviruses, as well as strategies to maximize generation efficiency and recombinant protein or baculovirus production. The key steps for generating baculovirus stocks and troubleshooting strategies are described.


Subject(s)
Baculoviridae , Recombinant Proteins , Baculoviridae/genetics , Animals , Recombinant Proteins/genetics , Genetic Vectors/genetics , Transfection/methods , Homologous Recombination , Sf9 Cells , Cell Line , Spodoptera/virology , Insecta/genetics , Insecta/virology
9.
Methods Mol Biol ; 2829: 159-173, 2024.
Article in English | MEDLINE | ID: mdl-38951332

ABSTRACT

The baculovirus expression vector system (BEVS) is a powerful platform for protein expression in insect cells. A prevalent application is the expression of complex protein structures consisting of multiple, interacting proteins. Coinfection with multiple baculoviruses allows for production of complex structures, facilitating structure-function studies, allowing augmentation of insect cell functionality, and production of clinically relevant products such as virus-like particles (VLPs) and adeno-associated viral vectors (AAV). Successful coinfections require the generation of robust and well-quantified recombinant baculovirus stocks. Virus production through homologous recombination, combined with rigorous quantification of viral titers, allows for synchronous coinfections producing high end-product titers. In this chapter, we describe the streamlined workflow for generation and quantification of high-quality recombinant baculovirus stocks and successful coinfection as defined by a preponderance of dually infected cells in the insect cell culture.


Subject(s)
Baculoviridae , Genetic Vectors , Recombinant Proteins , Baculoviridae/genetics , Animals , Genetic Vectors/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Cell Line , Spodoptera/virology
10.
Mol Ecol ; : e17453, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953291

ABSTRACT

The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.

11.
Int J Biol Macromol ; : 133755, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986995

ABSTRACT

Bacterial cellulose (BC) is an extracellular polysaccharide with myriad unique properties, such as high purity, water-holding capacity and biocompatibility, making it attractive in materials science. However, genetic engineering techniques for BC-producing microorganisms are rare. Herein, the electroporation-based gene transformation and the λ Red-mediated gene knockout method with a nearly 100 % recombination efficiency were established in the fast-growing and BC hyperproducer Enterobacter sp. FY-07. This genetic manipulation toolkit was validated by inactivating the protein subunit BcsA in the cellulose synthase complex. Subsequently, the inducible BC-producing strains from glycerol were constructed through inducible expression of the key gene fbp in the gluconeogenesis pathway, which recovered >80 % of the BC production. Finally, the BC properties analysis results indicated that the induced-synthesized BC pellicles were looser, more porous and reduced crystallinity, which could further broaden the application prospects of BC. To our best knowledge, this is the first attempt to construct the completely inducible BC-producing strains. Our work paves the way for increasing BC productivity by metabolic engineering and broadens the available fabrication methods for BC-based advanced functional materials.

12.
G3 (Bethesda) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985659

ABSTRACT

Recombination plays a crucial role in evolution by generating novel haplotypes and disrupting linkage between genes, thereby enhancing the efficiency of selection. Here, we analyse the genomes of twelve great reed warblers (Acrocephalus arundinaceus) in a three-generation pedigree to identify precise crossover positions along the chromosomes. We located more than 200 crossovers and found that these were highly concentrated towards the telomeric ends of the chromosomes. Apart from this major pattern in the recombination landscape, we found significantly higher frequencies of crossovers in genic compared to intergenic regions, and in exons compared to introns. Moreover, while the number of recombination events was similar between the sexes, the crossovers were located significantly closer to the ends of paternal compared to maternal chromosomes. In conclusion, our study of the great reed warbler revealed substantial variation in crossover frequencies within chromosomes, with a distinct bias towards the sub-telomeric regions, particularly on the paternal side. These findings emphasise the importance of thoroughly screening the entire length of chromosomes to characterise the recombination landscape and uncover potential sex-biases in recombination.

13.
Cell Rep ; 43(7): 114464, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38985669

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.

14.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977974

ABSTRACT

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Subject(s)
Cytidine Deaminase , Immunoglobulin Class Switching , R-Loop Structures , Immunoglobulin Class Switching/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/chemistry , Animals , Mice , Methylation , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Recombination, Genetic , RNA/metabolism , RNA/genetics
15.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38950035

ABSTRACT

Natural selection is less efficient in the absence of recombination. As a result, nonrecombining sequences, such as sex chromosomes, tend to degenerate over time. Although the outcomes of recombination arrest are typically observed after many millions of generations, recent neo-sex chromosomes can give insight into the early stages of this process. Here, we investigate the evolution of neo-sex chromosomes in the Spanish marbled white butterfly, Melanargia ines, where a Z-autosome fusion has turned the homologous autosome into a nonrecombining neo-W chromosome. We show that these neo-sex chromosomes are likely limited to the Iberian population of M. ines, and that they arose around the time when this population split from North-African populations, around 1.5 million years ago. Recombination arrest of the neo-W chromosome has led to an excess of premature stop-codons and frame-shift mutations, and reduced gene expression compared to the neo-Z chromosome. Surprisingly, we identified two regions of ∼1 Mb at one end of the neo-W that are both less diverged from the neo-Z and less degraded than the rest of the chromosome, suggesting a history of rare but repeated genetic exchange between the two neo-sex chromosomes. These plateaus of neo-sex chromosome divergence suggest that neo-W degradation can be locally reversed by rare recombination between neo-W and neo-Z chromosomes.


Subject(s)
Butterflies , Recombination, Genetic , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Male , Butterflies/genetics , Female , Evolution, Molecular , Selection, Genetic
16.
World J Oncol ; 15(4): 562-578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993246

ABSTRACT

Background: Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods: We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results: Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions: Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.

17.
Front Vet Sci ; 11: 1434539, 2024.
Article in English | MEDLINE | ID: mdl-38993278

ABSTRACT

China has the largest pig herd in the world which accounts for more than 50% of the global pig population. Over the past three decades, the porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic loss to the Chinese swine industry. Currently, the prevalent PRRSV strains in the field are extremely complicated, and the NADC30-like strains, NADC34-like strains, and novel recombinant viruses have become a great concern to PRRS control in China. In this study, a novel NADC30-like PRRSV, named GS2022, was isolated from the lung of a dead pig collected from a farm that experienced a PRRS outbreak. The complete genome of GS2022 shares the highest identity with the NADC30 strain and contains a discontinuous deletion of 131 aa in nsp2. Novel deletion and insertion have been identified in ORF7 and 3'UTR. Recombination analysis revealed that the GS2022 is a potential recombinant of NADC30-like and JXA1-like strains. Both inter-lineage and intra-lineage recombination events were predicted to be involved in the generation of the GS2022. An infectious cDNA clone of GS2022 was assembled to generate the isogenic GS2022 (rGS2022). The growth kinetics of rGS2022 were almost identical to those of GS2022. The pathogenicity of the GS2022 and rGS2022 was evaluated using a nursery piglet model. In the infection groups, the piglets exhibited mild clinical symptoms, including short periods of fever and respiratory diseases. Both gross lesions and histopathological lesions were observed in the lungs and lymph nodes of the infected piglets. Therefore, we reported a novel recombinant NADC30-like PRRSV strain with moderate pathogenicity in piglets. These results provide new information on the genomic characteristics and pathogenicity of the NADC30-like PRRSV in China.

18.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994946

ABSTRACT

Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.


Subject(s)
Actins , Cell Nucleus , DNA Repair , Genetic Therapy , Polymerization , Humans , Actins/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Animals
19.
J Microbiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995433

ABSTRACT

DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.

20.
Future Oncol ; : 1-14, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011875

ABSTRACT

Aim: To determine the prevalence of deleterious mutations in BRCA1 and BRCA2 and in 13 genes involved in homologous recombination repair (HRR), the prevalence of genomic loss of heterozygosity and the allelic and hereditary status of BRCA1, BRCA2 and other HRR gene mutations in multiple solid tumor types. Patients & methods: This was a retrospective observational study of patients with an advanced/metastatic diagnosis in one of 15 solid tumor types, who were identified in a real-world clinico-genomic database. Results: Tumor tissue samples from 9457 patients were analyzed, among which 4.7% had known or suspected deleterious BRCA1/2 mutations. The prevalence (range) of mutations in HRR genes was 13.6% (2.4%-26.0%) and genomic loss of heterozygosity ≥16% was 20.6% (2.6-34.4%) across all tumor types. Conclusion: The prevalence of mutations varied significantly depending on the type of tumor.


The integrity of the human genome is maintained via multiple pathways of DNA repair, one of the most important of which is homologous recombination repair (HRR), which uses a sister chromatid as a template for high-fidelity restoration of altered DNA sequences. This study aimed to determine the prevalence of deleterious mutations, i.e., changes in the genetic code that interfere with proper cellular function, in the breast cancer genes BRCA1 and BRCA2 and in 13 other genes involved in HRR in various types of solid tumors in patients with advanced or metastatic cancer. The researchers found that 4.7% of tumor samples had BRCA1/2 mutations, 13.6% had mutations in any of the HRR genes and 20.6% had genomic loss of heterozygosity (gLOH) of at least 16% i.e., loss of sections of chromosomes affecting 16% or more of the genome. BRCA1/2 mutations were most common in ovarian cancer (13.1%), prostate cancer (9.3%), breast cancer (8.2%) and pancreatic cancer (4.9%). Prevalence for mutations in HRR genes ranges from 2.4 to 26.0% and gLOH ≥16% ranged from 2.6 to 34.4% depending on the tumor type. In conclusion, the prevalence of mutations in the BRCA1/2 genes, HRR genes and gLOH ≥16% varied widely across 15 tumor types.

SELECTION OF CITATIONS
SEARCH DETAIL
...