Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Med Eng Phys ; 129: 104184, 2024 07.
Article in English | MEDLINE | ID: mdl-38906570

ABSTRACT

Functional electrical stimulation (FES) has been demonstrated as a viable method for addressing motor dysfunction in individuals affected by stroke, spinal cord injury, and other etiologies. By eliciting muscle contractions to facilitate joint movements, FES plays a crucial role in fostering the restoration of motor function compromised nervous system. In response to the challenge of muscle fatigue associated with conventional FES protocols, a novel biofeedback electrical stimulator incorporating multi-motor tasks and predictive control algorithms has been developed to enable adaptive modulation of stimulation parameters. The study initially establishes a Hammerstein model for the stimulated muscle group, representing a time-varying relationship between the stimulation pulse width and the root mean square (RMS) of the surface electromyography (sEMG). An online parameter identification algorithm utilizing recursive least squares is employed to estimate the time-varying parameters of the Hammerstein model. Predictive control is then implemented through feedback corrections based on the comparison between predicted and actual outputs, guided by an optimization objective function. The integration of predictive control and roll optimization enables closed-loop control of muscle stimulation. The motor training tasks of elbow flexion and extension, wrist flexion and extension, and five-finger grasping were selected for experimental validation. The results indicate that the model parameters were accurately identified, with a RMS error of 3.83 % between actual and predicted values. Furthermore, the predictive control algorithm, based on the motor tasks, effectively adjusted the stimulus parameters to ensure that the stimulated muscle groups can achieve the desired sEMG characteristic trajectory. The biofeedback electrical stimulator that was developed has the potential to assist patients experiencing motor dysfunction in achieving the appropriate joint movements. This research provides a foundation for a novel intelligent electrical stimulation model.


Subject(s)
Algorithms , Electromyography , Humans , Electric Stimulation Therapy/instrumentation , Electric Stimulation , Male , Adult , Biofeedback, Psychology/instrumentation , Motor Activity
2.
Magn Reson Med ; 92(4): 1617-1631, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38775235

ABSTRACT

PURPOSE: To develop a generalized rigid body motion correction method in 3D radial brain MRI to deal with continuous motion pattern through projection moment analysis. METHODS: An assumption was made that the multichannel coil moves with the head, which was achieved by using a flexible head coil. A two-step motion correction scheme was proposed to directly extract the motion parameters from the acquired k-space data using the analysis of center-of-mass with high noise robustness, which were used for retrospective motion correction. A recursive least-squares model was introduced to recursively estimate the motion parameters for every single spoke, which used the smoothness of motion and resulted in high temporal resolution and low computational cost. Five volunteers were scanned at 3 T using a 3D radial multidimensional golden-means trajectory with instructed motion patterns. The performance was tested through both simulation and in vivo experiments. Quantitative image quality metrics were calculated for comparison. RESULTS: The proposed method showed good accuracy and precision in both translation and rotation estimation. A better result was achieved using the proposed two-step correction compared to traditional one-step correction without significantly increasing computation time. Retrospective correction showed substantial improvements in image quality among all scans, even for stationary scans. CONCLUSIONS: The proposed method provides an easy, robust, and time-efficient tool for motion correction in brain MRI, which may benefit clinical diagnosis of uncooperative patients as well as scientific MRI researches.


Subject(s)
Algorithms , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Motion , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Artifacts , Image Processing, Computer-Assisted/methods , Computer Simulation , Retrospective Studies , Reproducibility of Results , Adult , Image Enhancement/methods
3.
PeerJ Comput Sci ; 9: e1581, 2023.
Article in English | MEDLINE | ID: mdl-38077539

ABSTRACT

Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verification and management of gateway meter flow in the power system. The approach begins by applying the Faster Region Convolutional Neural Network (Faster-RCNN) model and the Single Shot MultiBox Detector (SSD) model to the recognition system for dial readings. Then, the collected measurement data is pre-processed, excluding data collected under light load conditions. Next, an estimation error model and a solution equation for the electricity meter are established based on the pre-processed data. The operation error of the electricity meter is estimated, and the estimation accuracy is verified using the limited memory recursive least squares algorithm (LMRLSA). Furthermore, business assistant decision-making is carried out by combining the remote verification results with the estimation outcomes. The proposed dial reading recognition system is tested using 528 images of meter readings, achieving an accuracy of 98.49%. In addition, the influence of various parameters on the error results of the electricity meter is also explored. The results demonstrate that a memory length ranging from 600 to 1,200 and a line loss error of less than 5% yield the most suitable accuracy for estimating the electricity meter error. Meanwhile, it is advisable to remove measurement data collected under light load to avoid unnecessary checks. The experiments manifest that the proposed algorithm can properly eliminate the influence of old measurement data on the error parameter estimation, thereby enhancing the accuracy of the estimation. The adjustment of the memory length ensures real-time performance in estimating meter errors and enables online monitoring. This research has certain reference significance for achieving the online verification and management of gateway meter flow in the power system.

4.
Front Netw Physiol ; 3: 1242505, 2023.
Article in English | MEDLINE | ID: mdl-37920446

ABSTRACT

Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.

5.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688013

ABSTRACT

Drones are currently being used for various applications. However, the detection of drones for defense or security purposes has become problematic because of the use of plastic materials and the small size of these drones. Any drone can be placed under surveillance to accurately determine its position by collecting high-resolution data using various detectors such as the radar system proposed in this paper. The W-band radar has a high carrier frequency, which makes it easy to design a wide bandwidth system, and the wideband FMCW signal is suitable for creating high resolution images from a distance. Unfortunately, the huge amounts of data gathered in this way also contain clutter (such as background data and noise) that is usually generated from unstable radar systems and complex environmental factors, and which frequently gives rise to distorted data. Accurate extraction of the position of the target from this big data requires the clutter to be suppressed and canceled, but conventional clutter cancellation methods are not suitable. Four clutter cancellation algorithms are assessed and compared: standard deviation, adaptive least mean squares (LMS), recursive least squares (RLS), and the proposed LMS. The proposed LMS has combined LMS with the standard deviation method. First, the big data pertaining to the target position is collected using the W-band radar system. Subsequently, the target position is calculated by applying these algorithms. The performance of the proposed algorithms is measured and compared to that of the other three algorithms by conducting outdoor experiments.

6.
Sensors (Basel) ; 22(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501979

ABSTRACT

As a power source for autonomous underwater vehicles (AUVs), lithium-ion batteries play an important role in ensuring AUVs' electric power propulsion performance. An accurate state of charge (SOC) estimation method is the key to achieving energy optimization for lithium-ion batteries. Due to the complicated ocean environments, traditional filtering methods cannot effectively estimate the SOC of lithium-ion batteries in an AUV. Based on the standard extended Kalman filter (EKF), an adaptive iterative extended Kalman filter (AIEKF) method for the SOC in an AUV is proposed to address the traditional filter's problems, such as low accuracy and large errors. In this method, the adaptive update is introduced to deal with the uncertain noise from the lithium-ion battery. The iteration is used to improve the convergence speed and to reduce the computational burden. Compared with the EKF, iterative extended Kalman filter (IEKF) and adaptive extended Kalman filter (AEKF), the proposed AIEKF has a higher estimation accuracy and anti-interference capability, which is suitable for the AUV's SOC estimation. In addition, based on the second-order equivalent circuit model of the lithium-ion battery, a forgetting factor recursive least squares (FFRLS) method is proposed to deal with the multi-variability problem. In the end, four different methods, including EKF, IEKF, AEKF, and the proposed AIEKF, are compared in computational time. The experiment results show that the proposed method has high accuracy and fast estimation speed, meaning that it has good application potential in AUVs.

7.
Heliyon ; 8(11): e11146, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353179

ABSTRACT

State of charge (SOC) of ultracapacitor plays an important role in the energy management optimization of hybrid energy storage system for electric vehicles. In addition to the perfection of the model and the SOC estimation algorithm, the parameter identification method and temperature factor should also be considered. In this paper, an ultracapacitor test platform is established, the characteristic parameters of ultracapacitor at full temperature range are obtained. This paper uses the forgetting factor recursive least squares algorithm (FFRLS) to identify the parameters of the second-order equivalent circuit model of ultracapacitor online. The extended Kalman filter (EKF) algorithm is used to estimate the SOC of ultracapacitor cell. The results show that: (1) FFRLS algorithm can identify R 0 , R 1 , R 2 , C 1 , and C 2 values of ultracapacitor at full temperature range. Under the hybrid pulse power characterization working condition, the average mean absolute error between the estimated voltage and the actual voltage is about 0.0132 V. (2) EKF algorithm has a good adaptability to estimate SOC of ultracapacitor under different temperatures and working conditions. The SOC estimation error under different working conditions is low. From the perspective of mean square error, the estimation error at -20 °C is the lowest. (3) FFRLS and EKF joint estimation algorithm with good robustness and reliability can be used to estimate the SOC of ultracapacitor under different temperatures and working conditions. This study can provide a useful guidance for the parameter identification and SOC estimation of ultracapacitor for electric vehicle at different temperatures.

8.
Wirel Pers Commun ; 126(2): 1633-1648, 2022.
Article in English | MEDLINE | ID: mdl-36160318

ABSTRACT

The necessity of the rapid evolution of wireless communications, with continuously increasing demands for higher data rates and capacity Zheng (Big datadriven optimization for mobile networks toward 5g 30:44-51, 2016), is constantly augmenting the complexity of radio frequency (RF) transceiver architecture. A significant component in the configuration of such complex radio transceivers is the power amplifier(PA). Multiple distributed PAs are now common in proposed RF architectures. PAs exhibit non linear behaviour, causing signal distortion in transmission. Behavioural models offer a concise representation of a PAs characteristic performance which is extremely useful in simulating performance of multiple nonlinear power amplifiers. A considerable drawback with using the Recursive Least Squares (RLS) technique is that the instability of the coefficients during the training of the model. This manuscript provides a computationally efficient technique to detect the onset of instability during adaptive RLS training and subsequently to inform the decision to cease training of dynamic memory polynomial based behavioural models, to avoid the onset of instability. The proposed technique does not require modification of the RLS algorithm, merely an observation of the pre-exsisting autocorrelation function based update. This technique is experimentally validated using four different signal modulation schemes, LTE OFDM, 5G-NR, DVBS2X and WCDMA.

9.
Sensors (Basel) ; 22(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36016009

ABSTRACT

Accurate channel state information (CSI) is important for MIMO systems, especially in a high-speed scenario, fast time-varying CSI tends to be out of date, and a change in CSI shows complex nonlinearities. The kernel recursive least-squares (KRLS) algorithm, which offers an attractive framework to deal with nonlinear problems, can be used in predicting nonlinear time-varying CSI. However, the network structure of the traditional KRLS algorithm grows as the training sample size increases, resulting in insufficient storage space and increasing computation when dealing with incoming data, which limits the online prediction of the KRLS algorithm. This paper proposed a new sparse sliding-window KRLS (SSW-KRLS) algorithm where a candidate discard set is selected through correlation analysis between the mapping vectors in the kernel Hilbert spaces of the new input sample and the existing samples in the kernel dictionary; then, the discarded sample is determined in combination with its corresponding output to achieve dynamic sample updates. Specifically, the proposed SSW-KRLS algorithm maintains the size of the kernel dictionary within the sample budget requires a fixed amount of memory and computation per time step, incorporates regularization, and achieves online prediction. Moreover, in order to sufficiently track the strongly changeable dynamic characteristics, a forgetting factor is considered in the proposed algorithm. Numerical simulations demonstrate that, under a realistic channel model of 3GPP in a rich scattering environment, our proposed algorithm achieved superior performance in terms of both predictive accuracy and kernel dictionary size than that of the ALD-KRLS algorithm. Our proposed SSW-KRLS algorithm with M=90 achieved 2 dB NMSE less than that of the ALD-KRLS algorithm with v=0.001, while the kernel dictionary was about 17% smaller when the speed of the mobile user was 120 km/h.

10.
Sensors (Basel) ; 22(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336375

ABSTRACT

The paper proposes a joint semi-blind algorithm for simultaneously cancelling the self-interference component and estimating the propagation channel in 5G Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)-encoded short-packet Full-Duplex (FD) transmissions. To avoid the effect of channel estimation processes when using short-packet transmissions, this semi-blind algorithm was developed by taking into account only a small number (four at least) pilot symbols, which was integrated with the intended information sequence and used for the feedback loop of the estimation of the channels. The results showed that this semi-blind algorithm not only achieved nearly optimal performance, but also significantly reduced the processing time and computational complexity. This semi-blind algorithm can also improve the performances of the Mean-Squared Error (MSE) and Bit Error Rate (BER). The results of this study highlight the potential efficiency of this joint semi-blind iterative algorithm for 5G and Beyond and/or practical IoT transmission scenarios.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Feedback , Female , Humans , Parity , Pregnancy
11.
Sensors (Basel) ; 22(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214387

ABSTRACT

Self-interference occurs when there is electromagnetic coupling between the transmission and reception of the same node; thus, degrading the RX sensitivity to incoming signals. In this paper we present a low-complexity technique for self-interference cancellation in multiple carrier multiple access systems employing whole band direct to digital sampling. In this scenario, multiple users are simultaneously received and transmitted by the system at overlapping arbitrary bandwidths and powers. Traditional algorithms for self-interference mitigation based on recursive least squares (RLS) or least mean squares (LMS), fail to provide sufficient rejection, since the incoming signal is far from being spectrally flat, which is critical for their performance. The proposed algorithm mitigates the interference by modeling the incoming multiple user signal as an autoregressive (AR) process and jointly estimates the AR parameters and self-interference. The resulting algorithm can be implemented using a low-complexity architecture comprised of only two RLS modules. The novel algorithm further satisfies low latency constraints and is adaptive, supporting time varying channel conditions. We compare this to many self-interference cancellation algorithms, mostly adopted from the acoustic echo cancellation literature, and show significant performance gain.


Subject(s)
Artifacts , Signal Processing, Computer-Assisted , Algorithms , Least-Squares Analysis
12.
Sensors (Basel) ; 23(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36617002

ABSTRACT

This paper presents a sliding mode control (SMC)-based path-tracking algorithm for autonomous vehicles by considering model-free adaptive feedback actions. In autonomous vehicles, safe path tracking requires adaptive and robust control algorithms because driving environment and vehicle conditions vary in real time. In this study, the SMC was adopted as a robust control method to adjust the switching gain, taking into account the sliding surface and unknown uncertainty to make the control error zero. The sliding surface can be designed mathematically, but it is difficult to express the unknown uncertainty mathematically. Information of priori bounded uncertainties is needed to obtain closed-loop stability of the control system, and the unknown uncertainty can vary with changes in internal and external factors. In the literature, ongoing efforts have been made to overcome the limitation of losing control stability due to unknown uncertainty. This study proposes an integrated method of adaptive feedback control (AFC) and SMC that can adjust a bounded uncertainty. Some illustrative and representative examples, such as autonomous driving scenarios, are also provided to show the main properties of the designed integrated controller. The examples show superior control performance, and it is expected that the integrated controller could be widely used for the path-tracking algorithms of autonomous vehicles.

13.
ISA Trans ; 126: 370-376, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34426005

ABSTRACT

In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.

14.
Micromachines (Basel) ; 12(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945375

ABSTRACT

Due to the excellent advantages of high speed, high precision, and driving force, piezoelectric actuators nanopositioning systems have been widely used in various micro/nanomachining fields. However, the inherent resonance dynamic of the nanopositioning system generated by the flexure-hinge greatly deteriorates the positioning performance and limits the closed-loop bandwidth. Even worse, the notch filter for eliminating the effect of resonance does not work due to the varying resonant frequency resulting from the external disturbance or mass load. To this end, an adaptive notch filter for piezo-actuated nanopositioning system via position and online estimate dual-mode (POEDM) has been proposed in this paper, which can estimate the varying resonant frequency in real-time and suppress the resonance to improve the closed-loop bandwidth. First, a novel variable forgetting factor recursive least squares (VFF-RLS) algorithm for estimating resonant frequency online is presented, which is robust to the noise and provides the performances of both fast tracking and stability. Then, a POEDM method is proposed to achieve the online identification of the resonant frequency in the presence of noise and disturbance. Finally, a series of validation simulations are carried out, and the results indicate that, the frequency of input signal and the bandwidth have been achieved up to 12.5% and 87.5% of the first resonant frequency, respectively.

15.
Sensors (Basel) ; 21(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502650

ABSTRACT

The small-angle optical particle counter (OPC) can detect particles with strong light absorption. At the same time, it can ignore the properties of the detected particles and detect the particle size singly and more accurately. Reasonably improving the resolution of the low pulse signal of fine particles is key to improving the detection accuracy of the small-angle OPC. In this paper, a new adaptive filtering method for the small-angle scattering signals of particles is proposed based on the recursive least squares (RLS) algorithm. By analyzing the characteristics of the small-angle scattering signals, a variable forgetting factor (VFF) strategy is introduced to optimize the forgetting factor in the traditional RLS algorithm. It can distinguish the scattering signal from the stray light signal and dynamically adapt to the change in pulse amplitude according to different light absorptions and different particle sizes. To verify the filtering effect, small-angle scattering pulse extraction experiments were carried out in a simulated smoke box with different particle properties. The experiments show that the proposed VFF-RLS algorithm can effectively suppress system stray light and background noise. When the particle detection signal appears, the algorithm has fast convergence and tracking speed and highlights the particle pulse signal well. Compared with that of the traditional scattering pulse extraction method, the resolution of the processed scattering pulse signal of particles is greatly improved, and the extraction of weak particle scattering pulses at a small angle has a greater advantage. Finally, the effect of filter order in the algorithm on the results of extracting scattering pulses is discussed.


Subject(s)
Algorithms , Least-Squares Analysis , Particle Size
16.
Neural Netw ; 143: 550-563, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34304003

ABSTRACT

Reservoir computing is a machine learning framework derived from a special type of recurrent neural network. Following recent advances in physical reservoir computing, some reservoir computing devices are thought to be promising as energy-efficient machine learning hardware for real-time information processing. To realize efficient online learning with low-power reservoir computing devices, it is beneficial to develop fast convergence learning methods with simpler operations. This study proposes a training method located in the middle between the recursive least squares (RLS) method and the least mean squares (LMS) method, which are standard online learning methods for reservoir computing models. The RLS method converges fast but requires updates of a huge matrix called a gain matrix, whereas the LMS method does not use a gain matrix but converges very slow. On the other hand, the proposed method called a transfer-RLS method does not require updates of the gain matrix in the main-training phase by updating that in advance (i.e., in a pre-training phase). As a result, the transfer-RLS method can work with simpler operations than the original RLS method without sacrificing much convergence speed. We numerically and analytically show that the transfer-RLS method converges much faster than the LMS method. Furthermore, we show that a modified version of the transfer-RLS method (called transfer-FORCE learning) can be applied to the first-order reduced and controlled error (FORCE) learning for a reservoir computing model with a closed-loop, which is challenging to train.


Subject(s)
Machine Learning , Neural Networks, Computer , Least-Squares Analysis
17.
Neural Netw ; 138: 110-125, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33636484

ABSTRACT

Spiking neural networks (SNNs) are regarded as effective models for processing spatio-temporal information. However, their inherent complexity of temporal coding makes it an arduous task to put forward an effective supervised learning algorithm, which still puzzles researchers in this area. In this paper, we propose a Recursive Least Squares-Based Learning Rule (RLSBLR) for SNN to generate the desired spatio-temporal spike train. During the learning process of our method, the weight update is driven by the cost function defined by the difference between the membrane potential and the firing threshold. The amount of weight modification depends not only on the impact of the current error function, but also on the previous error functions which are evaluated by current weights. In order to improve the learning performance, we integrate a modified synaptic delay learning to the proposed RLSBLR. We conduct experiments in different settings, such as spiking lengths, number of inputs, firing rates, noises and learning parameters, to thoroughly investigate the performance of this learning algorithm. The proposed RLSBLR is compared with competitive algorithms of Perceptron-Based Spiking Neuron Learning Rule (PBSNLR) and Remote Supervised Method (ReSuMe). Experimental results demonstrate that the proposed RLSBLR can achieve higher learning accuracy, higher efficiency and better robustness against different types of noise. In addition, we apply the proposed RLSBLR to open source database TIDIGITS, and the results show that our algorithm has a good practical application performance.


Subject(s)
Action Potentials , Machine Learning , Humans , Least-Squares Analysis , Models, Neurological , Neurons/physiology , Spatio-Temporal Analysis
18.
Sensors (Basel) ; 21(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401778

ABSTRACT

Among various localization methods, a localization method that uses a radio frequency signal-based wireless sensor network has been widely applied due to its robustness against noise factors and few limits on installation location. In this paper, we focus on an iterative localization scheme for a mobile with a limited number of time difference of arrival (TDOA) and angle of arrival (AOA) data measured from base stations. To acquire the optimal location of a mobile, we propose a recursive solution for localization using an iteratively reweighted-recursive least squares (IR-RLS) algorithm. The proposed IR-RLS scheme can obtain the optimal solution with a fast computational speed when additional TDOA and/or AOA data is measured from base stations. Moreover, while the number of measured TDOA/AOA data was limited, the proposed IR-RLS scheme could obtain the precise location of a mobile. The performance of the proposed IR-RLS method is confirmed through some simulation results.

19.
ISA Trans ; 105: 396-405, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32444214

ABSTRACT

Kernel recursive least squares (KRLS) is very sensitive to non-Gaussian noise and hence, robust extensions are proposed using maximum correntropy criterion or generalized maximum correntropy. However, because of the complex form of the model, there is no theoretical analysis on the convergence of these filters. In this paper, we propose a new alternative: Kernel Regularized Robust RLS (KR3LS). It uses half-quadratic technique to simplify the form of the loss function. Our major contribution is then proving the convergence of the filter to the target weights and desired output. The bounds of regularization factor is also obtained. KR3LS is experimentally tested using synthetic and real data and is shown to perform superior compared to other robust alternatives.

20.
Sensors (Basel) ; 20(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32182977

ABSTRACT

This paper presents a novel adaptive recursive least squares filter (ARLSF) for motion artifact removal in the field of seismocardiography (SCG). This algorithm was tested with a consumer-grade accelerometer. This accelerometer was placed on the chest wall of 16 subjects whose ages ranged from 24 to 35 years. We recorded the SCG signal and the standard electrocardiogram (ECG) lead I signal by placing one electrode on the right arm (RA) and another on the left arm (LA) of the subjects. These subjects were asked to perform standing and walking movements on a treadmill. ARLSF was developed in MATLAB to process the collected SCG and ECG signals simultaneously. The SCG peaks and heart rate signals were extracted from the output of ARLSF. The results indicate a heartbeat detection accuracy of up to 98%. The heart rates estimated from SCG and ECG are similar under both standing and walking conditions. This observation shows that the proposed ARLSF could be an effective method to remove motion artifact from recorded SCG signals.


Subject(s)
Accelerometry/methods , Electrocardiography/methods , Signal Processing, Computer-Assisted , Thoracic Wall/physiology , Adult , Algorithms , Artifacts , Female , Heart Rate/physiology , Humans , Least-Squares Analysis , Male , Motion , Vibration , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL