Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Front Plant Sci ; 15: 1415867, 2024.
Article in English | MEDLINE | ID: mdl-38957602

ABSTRACT

Introduction: Salt stress is a major environmental factor that constrains soybean growth, development, and productivity. Flavonoids are key secondary metabolites that play a crucial role in enhancing plant resistance to both biotic and abiotic stress. However, a comprehensive understanding of the regulatory mechanisms underlying flavonoid biosynthesis under salt stress in soybean is lacking. Methods: In this study, an integrative analysis of soybean metabolome and transcriptome was conducted using two soybean lines, FQ03 (salt-sensitive, SS) and FQ07 (salt-tolerant, ST). Results: A total of 650 significantly changed metabolites were identified in SS and ST after salt stress treatment. Among them, 151 flavonoids were categorized into nine classes, with flavones and flavonols being the predominant flavonoid types in soybean. Heatmap analysis showed higher contents of most flavonoid metabolites in ST than in SS under salt stress, and the total flavonoid content in ST was significantly higher than that in SS. In addition, transcriptome analysis revealed a higher number of differentially expressed genes (DEGs) in ST than in SS under salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways related to phenylpropanoid biosynthesis, isoflavonoid biosynthesis, flavonoid biosynthesis, as well as flavone and flavonol biosynthesis. Notably, 55 DEGs that were mapped to the flavonoid biosynthetic pathway were identified, with most showing higher expression levels in ST than in SS. Weighted gene correlation network analysis identified eight structural genes and six transcription factor genes as key regulators of flavonoid biosynthesis within the blue module. Furthermore, qRT-PCR results confirmed the accuracy of the transcriptomic data and reliability of the identified candidate genes. Discussion: This study provides insights into the regulatory mechanisms underlying salt stress responses in soybean and highlights hub genes as potential targets for developing salt-tolerant soybean varieties.

2.
Curr Issues Mol Biol ; 46(6): 5825-5844, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921019

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.

3.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892319

ABSTRACT

The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.


Subject(s)
Metabolomics , Muscle Fibers, Fast-Twitch , Muscle Fibers, Slow-Twitch , Animals , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Metabolomics/methods , Metabolome , Energy Metabolism , Gene Expression Profiling , Muscle, Skeletal/metabolism , Fish Proteins/metabolism , Fish Proteins/genetics , Gene Expression Regulation , Glycolysis
4.
Mar Biotechnol (NY) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913221

ABSTRACT

Naturally, the ovaries of many farmed fish can only develop to stage IV (mainly including stage IV oocytes, known as full-grown postvitellogenic oocytes). Therefore, spawn-inducing hormone injections are used to promote ovary development and oocyte maturation, facilitating reproduction in the aquaculture industry. The study of spawn-inducing hormones and their underlying neuroendocrine mechanisms has been a recent focus in fish reproductive biology. However, the intra-ovarian regulatory mechanisms of ovary development and oocyte maturation after hormone injection require further investigation. In this study, we explored the histological and transcriptomic map of the ovary of Hemibarbus labeo after hormone injection to reveal changes in the ovary. The gonad index significantly increased after hormone injection for 5.5 h, after which no significant change was observed. Histological analysis showed that the nuclei had moved to one side of the oocytes at 5.5 h after hormone injection. Moreover, the volume of the oocytes increased and their yolk membranes thickened. Oocytes then underwent their first meiotic division at 5.5-11 h after hormone injection. Subsequently, the follicular membrane was ruptured, and ovulation was completed at 11-16.5 h after hormone injection. In addition, we identified 3189 differentially expressed genes (DEGs) on comparing the transcriptomes at different time points after hormone injection. These DEGs were significantly enriched in the GO terms of nervous system process, molecular transducer activity, and extracellular region, and the KEGG pathways of TNF signaling and cytokine-cytokine receptor interaction; these may play important roles in ovary development and oocyte maturation. Within these pathways, genes such as apoe, creb3, jun, junb, il11, and il8 may play important roles in steroid hormone synthesis and ovulation. Conclusively, our results show detailed sequential dynamics of oocyte development and provide new insights into the intra-ovarian regulatory mechanisms of ovarian development and oocyte maturation in H. labeo. These findings may be important for research on improving egg quality and reproduction in aquaculture.

5.
Cell Mol Biol Lett ; 29(1): 89, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877420

ABSTRACT

CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.


Subject(s)
Genomic Instability , RNA, Circular , Genomic Instability/genetics , Humans , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , DNA/metabolism , DNA/genetics , R-Loop Structures/genetics , RNA/metabolism , RNA/genetics , DNA Replication/genetics
6.
Planta ; 260(1): 33, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896325

ABSTRACT

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Subject(s)
Agrostis , Aluminum , Antioxidants , Malates , Plant Roots , gamma-Aminobutyric Acid , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Antioxidants/metabolism , gamma-Aminobutyric Acid/metabolism , Aluminum/toxicity , Agrostis/drug effects , Agrostis/metabolism , Agrostis/physiology , Malates/metabolism , Citric Acid/metabolism , Oxidative Stress/drug effects
7.
Plant Physiol Biochem ; 212: 108754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824693

ABSTRACT

Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.


Subject(s)
Ginkgo biloba , Terpenes , Ginkgo biloba/metabolism , Ginkgo biloba/genetics , Terpenes/metabolism , Gene Expression Regulation, Plant
8.
Ann Bot ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845347

ABSTRACT

Plant senescence is an integrated program of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species, WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, ROS and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.

9.
J Pak Med Assoc ; 74(4): 818-819, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751289

ABSTRACT

Glucokathexis is a clinical state characterized by low plasma glucose levels, in the presence of adequate glucose precursor stores. We conceive and construct this rubric to initiate interest and inspire insight into this field of metabolic medicine. We list various conditions that can cause true as well as pseudo-glucokathexis.


Subject(s)
Blood Glucose , Humans , Blood Glucose/metabolism
10.
J Agric Food Chem ; 72(23): 12896-12914, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810024

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.


Subject(s)
Angiotensin-Converting Enzyme 2 , Up-Regulation , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Humans , Animals , Up-Regulation/drug effects , Renin-Angiotensin System/drug effects , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Phytochemicals/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology
11.
J Hazard Mater ; 473: 134702, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788589

ABSTRACT

To reveal the feedbacks and regulating mechanisms of microplastic types and doses on microbial community, a microcosm experiment was carried out with two non-degradable microplastics [polyethylene (PE) and polyvinyl chloride (PVC)] and four biodegradable microplastics [poly(butylene succinate) (PBS), polyhydroxyalkanoates (PHA), poly(butyleneadipate-co-terephthalate) (PBAT), and polypropylene carbonate (PPC)] at different levels (1 %, 7 %, and 28 %). As a result, the content of total carbon (TC), soil organic carbon (SOC), and microbial biomass carbon (MBC) (expect MBC in PBS soil) increased with increasing doses of microplastics, and increased at the lowest PE dose rate. Biodegradable microplastics created a more active ecological niche while enriching more pathogens than non-degradable microplastics. Structural equation modeling indicated that microbial diversities were in a type-dependent assembly, whereas microbial compositions were more profoundly affected by the microplastic doses, ultimately. The standardized total effect coefficient of microplastic types on bacterial and fungal diversities was - 0.429 and - 0.282, and that of doses on bacterial and fungal compositions was 0.487 and 0.336, respectively. Both microplastic types and doses significantly impacted pH, electrical conductivity, total nitrogen, TC, SOC, and MBC, subsequently inhibiting microbial diversities and stimulating microbial compositions with particular pathways. The results provide a comprehensive understanding for evaluating the potential risk of microplastics.


Subject(s)
Microplastics , Soil Microbiology , Soil Pollutants , Microplastics/toxicity , Soil Pollutants/toxicity , Soil Pollutants/analysis , Bacteria/drug effects , Bacteria/classification , Fungi/drug effects , Microbiota/drug effects , Polypropylenes , Carbon/chemistry
12.
Int J Biol Macromol ; 270(Pt 1): 132273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734348

ABSTRACT

The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), ß-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.


Subject(s)
Brassicaceae , Fatty Acids, Unsaturated , Gene Expression Regulation, Plant , Plant Proteins , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Oils/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Promoter Regions, Genetic , Phylogeny , Nicotiana/genetics , Nicotiana/metabolism
13.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809782

ABSTRACT

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Subject(s)
Cyclopentanes , Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Proteins , Saccharum , Salicylic Acid , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Saccharum/genetics , Saccharum/microbiology , Saccharum/metabolism , Saccharum/immunology , Fusarium/physiology , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Nicotiana/immunology , Ethylenes/metabolism
14.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806081

ABSTRACT

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.


Subject(s)
Cichlids , Fatty Acid Elongases , Animals , Male , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Cichlids/genetics , Cichlids/metabolism , Lipid Metabolism/genetics , Gene Silencing , Liver/metabolism , Nutrients/metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Amino Acid Sequence , Cloning, Molecular , Acetyltransferases/genetics , Acetyltransferases/metabolism , Gene Knockdown Techniques
15.
Wiley Interdiscip Rev RNA ; 15(3): e1851, 2024.
Article in English | MEDLINE | ID: mdl-38702938

ABSTRACT

Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Subject(s)
Neoplasms , Oncogenes , RNA, Long Noncoding , Humans , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
16.
J Anim Sci Biotechnol ; 15(1): 68, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725063

ABSTRACT

BACKGROUND: In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear. RESULTS: Critical biochemical events involved in ovulation in domestic chickens (Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle (F1) and postovulatory follicle (POF1) in continuous laying (CL) and intermittent laying (IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes (DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A (LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro. CONCLUSIONS: This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.

17.
Arch Med Sci ; 20(2): 602-611, 2024.
Article in English | MEDLINE | ID: mdl-38757032

ABSTRACT

Introduction: Chondrocyte apoptosis as a prominent characteristic is usually accompanied by cartilage degeneration in osteoarthritis (OA). Herein, we aimed to determine the roles of miR-149-5p in tumor necrosis factor-α (TNF-α)-induced chondrocyte apoptosis. Material and methods: Human chondrocytes were cultured with TNF-α to establish an apoptosis cell model in vitro. After transfection with miR-149-5p mimics or co-expression with TRADD in chondrocytes, cell viability, apoptosis, inflammatory cytokines, mRNA and protein expression were measured using CCK8, Annexin V-FITC double staining, ELISA assays, RT-qPCR and western blotting, respectively. Results: TNF-α-induced chondrocyte apoptosis occurred in association with the inhibition of cell proliferation, the elevation of inflammatory cytokine levels and the activation of TRADD and caspase-3/8 signaling. The post-transcriptional regulatory mechanism suggested that TRADD was a direct target of miR-149-5p, and overexpression of miR-149-5p resulted in the down-regulation of TRADD protein expression in chondrocytes. In addition, miR-149-5p mimics had the ability to attenuate TNF-α-induced inflammation and apoptosis, while transfection with TRADD vector neutralized the protective effects of miR-149-5p on TNF-α-induced chondrocyte dysfunction. Conclusions: miR-149-5p inversely regulated TNF-α-mediated chondrocyte damage by inhibiting TRADD-modulated caspases signaling. The miR-149-5p/TRADD signaling pathway might be a promising therapeutic target for the treatment of OA.

18.
Mol Cancer ; 23(1): 108, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762484

ABSTRACT

Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.


Subject(s)
B7-H1 Antigen , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/etiology , Neoplasms/genetics , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Animals , Signal Transduction , Gene Expression Regulation, Neoplastic
19.
Plants (Basel) ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794493

ABSTRACT

Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.

20.
Acta Pharm Sin B ; 14(5): 1924-1938, 2024 May.
Article in English | MEDLINE | ID: mdl-38799641

ABSTRACT

Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.

SELECTION OF CITATIONS
SEARCH DETAIL
...