Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067994

ABSTRACT

Developing a new type of polyurethane is essential because conventional options often exhibit shortcomings in terms of environmental sustainability, cost-effectiveness, and performance in specialized applications. A novel polyurethane adhesive derived from a simple mixture of castor oil (CO) and crude glycerin (CG) holds promise as it reduces reliance on fossil fuels and harnesses renewable resources, making it environmentally friendly. Simple CO/CG mixtures, adjusted at three different weight fractions, were used as bio-based polyester polyols to produce polyurethane adhesive for wood bonding. The resulting products are yellowish liquids with moderate-to-high viscosity, measuring 19,800-21,000 cP at 25 °C. The chemical structure of the polyester polyols was characterized using infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). These polyols reacted with polymeric 4,4-methylene diphenyl diisocyanate (p-MDI) at a consistent isocyanate index of 1.3, resulting in the formation of polyurethane adhesives. Crucially, all final adhesives met the adhesive strength requirements specified by ASTM D-5751 standards, underscoring their suitability for wood bonding applications. The addition of CG enhanced the surface and volumetric hydrophobicity of the cured adhesives, resulting in adhesive properties that are not only stronger but also more weather-resistant. Although the thermal stability of the adhesives decreased with the inclusion of CG, FTIR analysis confirmed proper polyurethane polymer formation. The adhesive adjusted for a 2:1 CO:CG weight ratio promoted wood-wood bonding with the highest shear strength, likely due to a higher formation of urethane linkages between hydroxyl groups from the blend of polyols and isocyanate groups from the p-MDI.

2.
Plant Mol Biol ; 113(1-3): 89-103, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702897

ABSTRACT

Seed storage compound deposition is influenced by both maternal and filial tissues. Within this framework, we analyzed strategies that operate during the development and filling of soybean embryos, using in vitro culture systems combined with metabolomics and proteomics approaches. The carbon:nitrogen ratio (C:N) of the maternal supply and the hormone abscisic acid (ABA) are specific and interacting signals inducing differential metabolic reprogrammings linked to changes in the accumulation of storage macromolecules like proteins or oils. Differences in the abundance of sugars, amino acids, enzymes, transporters, transcription factors, and proteins involved in signaling were detected. Embryos adapted to the nutritional status by enhancing the metabolism of both carbon and nitrogen under lower C:N ratio condition or only carbon under higher C:N ratio condition. ABA turned off multiple pathways especially in high availability of amino acids, prioritizing the storage compounds biosynthesis. Common responses induced by ABA involved increased sucrose uptake (to increase the sink force) and oleosin (oil body structural component) accumulation. In turn, ABA differentially promoted protein degradation under lower nitrogen supply in order to sustain the metabolic demands. Further, the operation of a citrate shuttle was suggested by transcript quantification and enzymatic activity measurements. The results obtained are useful to help define biotechnological tools and technological approaches to improve oil and protein yields, with direct impact on human and animal nutrition as well as in green chemistry.

3.
Polymers (Basel) ; 13(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070232

ABSTRACT

This paper provides an overview of the recent progress in research and development dealing with polymers derived from plant oils. It highlights the widening interest in novel approaches to the synthesis, characterization, and properties of these materials from renewable resources and emphasizes their growing impact on sustainable macromolecular science and technology. The monomers used include unmodified triglycerides, their fatty acids or the corresponding esters, and chemically modified triglycerides and fatty acid esters. Comonomers include styrene, divinylbenzene, acrylics, furan derivatives, epoxides, etc. The synthetic pathways adopted for the preparation of these materials are very varied, going from traditional free radical and cationic polymerizations to polycondensation reactions, as well as metatheses and Diels-Alder syntheses. In addition to this general appraisal, the specific topic of the use of tung oil as a source of original polymers, copolymers, and (nano)composites is discussed in greater detail in terms of mechanisms, structures, properties, and possible applications.

4.
Chem Phys Lipids ; 231: 104947, 2020 09.
Article in English | MEDLINE | ID: mdl-32622838

ABSTRACT

This work describes the synthesis of new lipophilic amides and esters analogues of classical organochlorides herbicides by incorporation of long-chains from fatty acids and derivatives. The new fatty esters and amides were synthesized in 96-99% and 80-89% yields, respectively. In general, all compounds tested showed superior in vitro activity than commercial herbicides against growth L. sativa and A. cepa, in ranges 86-100% of germinative inhibition. The target compounds showed, significantly more susceptible towards acid hydrolysis than 2,4-dichlorophenoxyacetic acid (2,4-D). The kinetic and NMR studies showed that the incorporation of lipophilic chains resulted in a decrease in half-life time of new herbicides compounds (1.5 h) than 2,4-D (3 h). These findings suggest the synthesis of new lipophilic herbicides as potential alternative to traditional formulations, by incorporation of long fatty alkyl chains in the molecular structure of 2,4-D, resulting in superior in vitro herbicidal activity, best degradation behavior and more hydrophobic derivatives.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Amides/pharmacology , Esters/pharmacology , Herbicides/pharmacology , Propanil/pharmacology , 2,4-Dichlorophenoxyacetic Acid/chemistry , Amides/chemical synthesis , Amides/chemistry , Esters/chemical synthesis , Esters/chemistry , Herbicides/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Structure , Onions/drug effects , Onions/growth & development , Oryza/drug effects , Oryza/growth & development , Propanil/chemistry
5.
Waste Manag ; 108: 144-153, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32353779

ABSTRACT

This study evaluated the physicochemical and morphological properties of pectin and chitosan particles combined with sugarcane vinasse for soil fertilization applications. Particles were obtained by adding the biopolymeric solutions (pectin or chitosan solution) dropwise into the crosslinking solutions (calcium chloride 1% in ethanolic solution or tripolyphosphate 5% aqueous solution) followed by drying. Vinasse enhanced pectin gel stability improving pectin/vinasse particle properties. Physicochemical characterization indicated that vinasse nutrients were properly incorporated in both pectin and chitosan matrices. Particles showed spherical shape, with an average diameter of 3 and 2 mm for the pectin and chitosan particles with vinasse, respectively. Chitosan particles, compared to pectin, showed lower swelling capacity and solubility and higher mechanical resistance indicating a denser and more compact polymer network. Both particles were able to hinder water evaporation rates from sandy soil under water stress conditions. Biobased particles with vinasse added show potential to be applied as soil fertilizer representing an alternative to use and disposal of this expressive wastewater from sugar and alcohol industries.


Subject(s)
Saccharum , Soil Pollutants , Biopolymers , Fertilizers , Soil
6.
Polymers (Basel) ; 12(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403401

ABSTRACT

A polyurethane (PU)-based eco-composite foam was prepared using dog wool fibers as a filler. Fibers were acquired from pet shops and alkaline treated prior to use. The influence of their incorporation on the PU foams' morphological, thermal, and mechanical properties was investigated. The random and disorganized presence of the microfibers along the foam influence their mechanical performance. Tensile and compression strengths were improved with the increased amount of dog wool microparticles on the eco-composites. The same occurred with the foams' hydration capacity. The thermal capacity was also slightly enhanced with the incorporation of the fillers. The fillers also increased the thermal stability of the foams, reducing their dilatation with heating. The best structural stability was obtained using up to 120 °C with a maximum of 15% of filler. In the end, the dog wool waste was rationally valorized as a filler in PU foams, demonstrating its potential for insulation applications, with a low cost and minimal environmental impact.

7.
Electron. j. biotechnol ; Electron. j. biotechnol;38: 32-39, Mar. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1051317

ABSTRACT

BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatography­mass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites


Subject(s)
Acrolein/analogs & derivatives , Eugenol/metabolism , Biotransformation , Gibberella/metabolism , Biodegradation, Environmental , Acrolein/metabolism , Biotechnology , Chromatography, High Pressure Liquid , Renewable Resources , Batch Cell Culture Techniques
8.
Materials (Basel) ; 11(11)2018 Nov 11.
Article in English | MEDLINE | ID: mdl-30423899

ABSTRACT

In this study, we investigated the potential of two non-edible oil extracts from seeds of Colliguaja integerrima (CIO) and Colliguaja salicifolia (CSO) to use as a renewable source for polyols and, eventually, polyurethane foams or biodiesel. For this purpose, two novel polyols from the aforementioned oils were obtained in a one-single step reaction using a mixture of hydrogen peroxide and acetic acid. The polyol derivatives obtained from the two studied oils were characterized by spectral (FTIR, ¹H NMR, and 13C NMR), physicochemical (e.g., chromatographic analysis, acid value, oxidizability values, iodine value, peroxide value, saponification number, kinematic viscosity, density, theorical molecular weight, hydroxyl number, and hydroxyl functionality) and thermal (TGA) analyses according to standard methods. Physicochemical results revealed that all parameters, with the exception of the iodine value, were higher for bio-polyols (CSP and CIP) compared to the starting oils. The NMR, TGA, and FTIR analyses demonstrated the formation of polyols. Finally, the OH functionality values for CIP and CSP were 4.50 and 5.00, respectively. This result indicated the possible used of CIP and CSP as a raw material for the preparation of polyurethane rigid foams.

9.
ChemSusChem ; 10(8): 1832-1837, 2017 04 22.
Article in English | MEDLINE | ID: mdl-28230317

ABSTRACT

The underexploited biorenewable p-cymene is employed as a solvent for the metathesis of various substrates. p-Cymene is a nontoxic compound that can be obtained in large amounts as a side product of the cellulose and citrus industry. For the cross-metathesis of estragole with methyl acrylate, this solvent prevents the consecutive double-bond isomerization of the product and affords the best yield of all solvents tested. Undesired consecutive isomerization is a major challenge for many substrates in olefin metathesis, including pharmaceutical precursors, and the use of p-cymene as a solvent may be a way to prevent it. This solvent results in a better metathesis performance than toluene for the three substrates tested in this work, matching its performance for two other substrates.


Subject(s)
Alkenes/chemistry , Monoterpenes/chemistry , Solvents/chemistry , Cymenes , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL