Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136259

ABSTRACT

PURPOSE: To eliminate the contaminants of Replication-Competent Adenovirus (RCA) during high titer recombinant oncolytic adenovirus production. METHODS: At first, we detected E1A copy numbers of different sources of 293 cells using Q-PCR, and we screened a subclone JH293-C21 of the JH293 cell line (purchased from ATCC) with lower early region 1A (E1A) copy numbers and higher adenovirus production ability. Then, we deleted the conserved region (CR)2 of the E1A gene in this subclone using the CRISPR-Cas9 system and obtained a stable cell clone JH293-C21-C14 with lower E1A expression, but the RCA formation had no significant reduction. Then, we further deleted the CR2 of JH293-C21-C14 cells with the CRISPR-Cas9 system and obtained a strain of cells named JH293-C21-C14-C28. Finally, we detected the capacity for cell proliferation, adenovirus production, and RCA formation in the production of recombinant adenovirus. RESULTS: The JH293-C21-C14-C28 cells had a similar cell proliferation ability and human adenovirus production as JH293-C21 cells. Most importantly, RCA production in JH293-C21-C14-C28 cells was lower than in JH293-C21 cells. CONCLUSION: Human adenovirus producer cell clone JH293-C21-C14-C28 with CR2 deletion can effectively prevent the RCA production of replication-competent oncolytic adenovirus; this will provide significant advantages in utility and safety in gene therapy.

2.
Viruses ; 15(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38005830

ABSTRACT

Adenoviruses are promising vectors for vaccine production and gene therapy. Despite all the efforts in removing animal-derived components such as fetal bovine serum (FBS) during the production of adenovirus vector (AdV), FBS is still frequently employed in the early stages of production. Conventionally, first-generation AdVs (E1 deleted) are generated in different variants of adherent HEK293 cells, and plaque purification (if needed) is performed in adherent cell lines in the presence of FBS. In this study, we generated an AdV stock in SF-BMAdR (A549 cells adapted to suspension culture in serum-free medium). We also developed a limiting dilution method using the same cell line to replace the plaque purification assay. By combining these two technologies, we were able to completely remove the need for FBS from the process of generating and producing AdVs. In addition, we demonstrated that the purified AdV stock is free of any replication-competent adenovirus (RCA). Furthermore, we demonstrated that our limiting dilution method could effectively rescue an AdV from a stock that is highly contaminated with RCA.


Subject(s)
Adenoviridae , Genetic Vectors , Animals , Humans , Adenoviridae/genetics , HEK293 Cells , Genetic Vectors/genetics
3.
Virology ; 586: 67-75, 2023 09.
Article in English | MEDLINE | ID: mdl-37487327

ABSTRACT

For cancer therapy and vaccination an amplified expression of the therapeutic gene is desired. Previously, we have developed a single-cycle adenovirus vector (SC-AdV) by deleting the adenovirus protease (PS) gene. In order to keep the E1 region intact within the PS-deleted adenoviruses, we examined the insertion of two transgenes under the control of a constitutive or inducible promoters. These were inserted between E4 and the right inverted terminal repeat in a wide variety of backbones with various combinations of PS, E3 and E4 deletion. Our data showed that PS-deleted adenoviruses, expressed transgenes as strongly as replication-competent AdVs in HEK293A and a variant of HeLa cells. In a head-to-head comparison in four human cell lines, we demonstrated that SC-AdV, was comparable for transgene expression efficacy with its replication-competent counterpart. However, the SC-AdV expresses its transgene 10 to 16,000 times higher than its replication-defective counterpart.


Subject(s)
Adenoviridae , Adenoviruses, Human , Humans , Adenoviridae/genetics , HeLa Cells , Peptide Hydrolases/genetics , Adenoviruses, Human/genetics , Genetic Vectors/genetics , Endopeptidases/genetics
4.
Front Mol Biosci ; 9: 883249, 2022.
Article in English | MEDLINE | ID: mdl-35677885

ABSTRACT

Oncolytic adenovirus is one of the most promising treatments against cancer and is widely evaluated clinically. During high titer production, "Wild-type-" like replication-competent adenovirus (RCA) contaminants can be generated through recombination events due to the DNA sequence similarity between oncolytic virus and host cells. These RCA contaminants raise various safety concerns in clinics. Cell culture-based methods have been developed to detect RCA contaminants in replication-deficient adenovirus vectors. These methods were based on that only RCA contaminants, but not the vectors, are able to grow in and lyse the test cell line. However, these methods are not suitable for distinguishing RCA contaminants from the oncolytic adenovirus products because both can replicate in test cell lines. Herein, we reported a qPCR-based method to quantify RCA contaminants quickly and reliably in E1B-deleted oncolytic adenovirus products. This method is based on specific detection of the E1B gene, which can be acquired during production via recombination events between viral and host cell DNA. The assay is sensitive with the limit of detection at 10 VP of the RCA contaminants and the limit of quantification at 75 VP of the RCA contaminants in each 40 µL qPCR reaction. We have also validated the method on virus batches produced in the non-GMP and GMP conditions. Our results showed that this qPCR-based method was reliable and robust for detecting and quantifying RCA contaminants in oncolytic adenovirus products. The method may also be adapted for other oncolytic adenoviruses products by switching primer sets.

5.
Methods Mol Biol ; 2521: 249-258, 2022.
Article in English | MEDLINE | ID: mdl-35733002

ABSTRACT

Production of conditionally replicating adenoviruses may unfortunately generate undesired replication-competent adenovirus (RCA) which raises safety concerns in clinical usage. Cell-based assays can detect RCA in batches of nonreplicating adenoviral vectors but cannot distinguish RCA from conditionally replicating oncolytic adenoviruses. Considering the great potential in using oncolytic viruses for cancer treatment, there is a need for comprehensive RCA-detection and -quantification methods. Here, we present a quantitative polymerase chain reaction (qPCR)-based assay that can be used to detect RCA particles in batches of conditionally replicating oncolytic adenoviruses. The assay is quantifying RCA by detection of the specific DNA sequence generated after a recombination event. Results showed that the method can successfully detect low levels of RCA, with a low limit of detection of ten viral particles.


Subject(s)
Adenoviridae , Oncolytic Viruses , Adenoviridae/genetics , Genetic Vectors/genetics , Oncolytic Viruses/genetics , Virus Replication/genetics
6.
Virol J ; 14(1): 219, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29126418

ABSTRACT

BACKGROUND: Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. METHODS: We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. RESULTS: The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. CONCLUSIONS: Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.


Subject(s)
Genetic Vectors/physiology , Image Cytometry , Lung Neoplasms/virology , Mesothelioma/virology , Oncolytic Virotherapy/methods , Adenoviridae/genetics , Adenovirus E1A Proteins/metabolism , Capsid Proteins/metabolism , Caspase 3/metabolism , Cell Death , Cell Line, Tumor , Genetic Vectors/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelioma/metabolism , Mesothelioma/pathology , Mesothelioma, Malignant , Single-Cell Analysis , Virus Replication
7.
BMC Cancer ; 17(1): 622, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28874135

ABSTRACT

BACKGROUND: Replication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting. METHODS: We constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5' regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype. RESULTS: We found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype. CONCLUSIONS: Sensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression.


Subject(s)
Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/metabolism , Gene Expression , Genetic Vectors/genetics , Regulatory Sequences, Nucleic Acid , Tumor Suppressor Protein p53/genetics , Virus Replication , Cell Line, Tumor , Cytopathogenic Effect, Viral , Genes, Reporter , Genotype , Humans , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Transcriptional Activation , Transduction, Genetic , Transgenes , Tumor Suppressor Protein p53/metabolism
8.
BMC Cancer ; 16: 455, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27405588

ABSTRACT

BACKGROUND: Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14 (ARF) and the 16 (INK4A) genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. METHODS: Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. RESULTS: A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. CONCLUSIONS: These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication.


Subject(s)
Adenoviridae/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Density Conservation Agents/pharmacology , Diphosphonates/pharmacology , Imidazoles/pharmacology , Mesothelioma/therapy , Tumor Suppressor Protein p53/metabolism , A549 Cells , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , HEK293 Cells , Humans , Pleural Cavity/pathology , Poly(ADP-ribose) Polymerases/metabolism , Receptors, Virus/genetics , Tumor Suppressor Protein p53/genetics , Zoledronic Acid
9.
Apoptosis ; 20(12): 1587-98, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26373551

ABSTRACT

Pancreatic carcinoma is relatively resistant to chemotherapy and cell death induced by replication of adenoviruses (Ad) can be one of the therapeutic options. Transduction efficacy of conventional type 5 Ad (Ad5) is however low and the cytotoxic mechanism by replication-competent Ad was not well understood. We constructed replication-competent Ad5 of which the E1A promoter region was replaced with a transcriptional regulatory region of the midkine, the survivin or the cyclooxygenase-2 gene, all of which were expressed at a high level in human tumors. We also prepared replication-competent Ad5 that were activated with the same region but had the type 35 Ad-derived fiber-knob region (AdF35) to convert the major cellular receptor for Ad infection from the coxsackie adenovirus receptor to CD46 molecules. Replication-competent AdF35 that were activated with the exogenous region produced cytotoxic effects on human pancreatic carcinoma cells greater than the corresponding Ad5 bearing with the same regulatory region. Cells infected with the AdF35 showed cytopathic effects and increased sub-G1 fractions. Caspase-9, less significantly caspase-8 and poly (ADP-ribose) polymerase, but not caspase-3 was cleaved and expression of molecules involved in autophagy and caspase-independent cell death pathways remained unchanged. Nevertheless, H2A histone family member X molecules were phosphorylated, and N-acetyl-L-cystein, an inhibitor for reactive oxygen species, suppressed the AdF35-mediated cytotoxicity. These data indicated a novel mechanism of Ad-mediated cell death and suggest a possible clinical application of the fiber-knob modified Ad.


Subject(s)
Adenoviridae/genetics , Pancreatic Neoplasms/virology , Reactive Oxygen Species/metabolism , Virus Replication/genetics , Acetylcysteine/metabolism , Caspases/metabolism , Cell Death/physiology , Cell Line , Cell Line, Tumor , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Cyclooxygenase 2/metabolism , HEK293 Cells , Humans , Membrane Cofactor Protein/metabolism , Pancreatic Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Promoter Regions, Genetic/genetics , Transduction, Genetic/methods , Pancreatic Neoplasms
10.
Biotechnol J ; 10(5): 760-71, 2015 May.
Article in English | MEDLINE | ID: mdl-25943527

ABSTRACT

Recombinant adenovirus vectors (AdVs) have been used for the development of vaccines, as gene therapy vectors and for protein production. Currently, the production of clinical grade batches of recombinant E1-deleted adenovirus type 5 vectors is performed using human-derived HEK293 or PER.C6(®) cell lines. In this work we describe the generation of a new human amniocyte-derived cell line named 1G3 and show that it can be used as a very promising cell host for AdV production in serum-free conditions, allowing for production in high cell density cultures and avoiding the typical cell density effect observed for HEK293. By design, this cell line makes the generation of replication-competent adenovirus during production of E1-deleted AdVs very unlikely. The impact of the culture system (static versus agitated) and AdV infection parameters such as multiplicity of infection, time of harvesting and cell concentration at infection were evaluated and compared with HEK293. Using stirred tanks bioreactors, it was possible to grow 1G3 cells to cell densities of up to 9 × 10(6) cells/mL using serum-free media. Moreover, without a medium exchange step at infection, a three-fold increase in AdV volumetric titers was obtained, as no cell density effect was observed at CCI 3. Overall, our results clearly demonstrate the potential of the human amniocyte-derived newly established cell line 1G3 for AdV production in a serum-free scalable process, paving the way for further process improvements based on fed-batch or perfusion strategies.


Subject(s)
Adenoviruses, Human/growth & development , Amniotic Fluid/cytology , Batch Cell Culture Techniques/methods , Culture Media, Serum-Free/metabolism , Adenoviruses, Human/genetics , Bioreactors , Cell Count , Cell Line , Female , Genetic Vectors , HEK293 Cells , Humans , Pregnancy , Viral Load , Virus Cultivation/methods
11.
Tumour Biol ; 36(10): 8137-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25990458

ABSTRACT

Type 5 adenoviruses expressing mda-7 gene (Ad-mda-7) induced cell death in various kinds of human tumors, but pancreatic carcinoma cells were relatively resistant to Ad-mda-7-mediated cytotoxicity. We then examined whether infection of Ad-mda-7 together with replication-competent Ad produced combinatory cytotoxic effects. We prepared replication-competent Ad, defective of the E1B55kDa gene or activated by a transcriptional regulatory region of the midkine or the survivin gene of which the expression was up-regulated in human tumors. Type 5 Ad bearing the exogenous regulatory region were further modified by replacing the fiber-knob region with that of type 35 Ad. Pancreatic carcinoma cells were infected with replication-incompetent Ad-mda-7 and the replication-competent Ad. Combinatory effects were examined with the CalcuSyn software and cell cycle analyses. Ad-mda-7 and the replication-competent Ad achieved cytotoxicity to pancreatic carcinoma. A combinatory use of Ad-mda-7 and either Ad defective of the E1B55kDa gene or Ad activated by the regulatory region produced synergistic cytotoxic effects. Cell cycle analyses demonstrated that the combination increased sub-G1 populations. These data collectively suggest that expression of MDA-7 augments cytotoxicity of replication-competent Ad and achieves adjuvant effects on Ad-mediated cell death.


Subject(s)
Adenoviridae/physiology , Apoptosis , Interleukins/genetics , Pancreatic Neoplasms/therapy , Virus Replication , Blotting, Western , Cell Cycle , Cell Proliferation , Genetic Vectors/administration & dosage , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Pancreatic Neoplasms
12.
Hum Vaccin Immunother ; 11(5): 1209-22, 2015.
Article in English | MEDLINE | ID: mdl-25876176

ABSTRACT

Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.


Subject(s)
Adenoviridae/genetics , Drug Carriers , Genetic Vectors , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Orthomyxoviridae/genetics , Orthomyxoviridae/immunology , Animals , Drug Discovery/trends , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Nucleocapsid Proteins , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
13.
Biologicals ; 43(3): 209-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25748638

ABSTRACT

Replication deficient human adenovirus type 5 (hAd5) is an important gene delivery vehicle and has been used in various fields of biomedical sciences such as gene therapy, cancer therapy and vaccination. Inspite of its various useful features, emergence of replication competent adenovirus (RCA) in recombinant virus stocks is a great concern. In the present study, recombinant adenovirus expressing foot-and-mouth disease virus serotype-O capsid proteins was propagated in HEK-293 cells and purified by CsCl density gradient ultracentrifugation. The virus was serially passaged in HEK-293 cells and at passage level (P) 2-4, 6, 8 and 12, tested for the presence of RCA. A vector dose of 2 × 10(8) and 1 × 10(10) TCID50 of the virus was used in cell line bioassay and PCR, respectively. Our results demonstrated that the PCR is more sensitive and rapid technique for the detection of RCA in recombinant adenovirus stocks as early as at P3, whereas the bioassay detected the RCA at P8.


Subject(s)
Adenoviridae , Capsid Proteins , Foot-and-Mouth Disease Virus/genetics , Genetic Vectors , Transduction, Genetic , Virus Replication , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Recombinant Proteins
14.
J Virol Methods ; 208: 177-88, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25159033

ABSTRACT

E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications.


Subject(s)
Adenoviruses, Human/growth & development , Genetic Vectors , Technology, Pharmaceutical/methods , Adenoviruses, Human/genetics , Biotechnology/methods , Cell Line , Culture Media, Serum-Free , Epithelial Cells/physiology , Humans , T-Lymphocytes, Helper-Inducer/physiology , Viral Load , Virus Cultivation/methods
15.
Cancer Biol Ther ; 15(10): 1358-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25019940

ABSTRACT

Oncolytic viruses have recently received widespread attention for their potential in innovative cancer therapy. Many telomerase promoter-regulated oncolytic adenoviral vectors retain E1A and E1B. However, the functions of E1A and E1B proteins in the oncolytic role of replication-competent adenovirus (RCAd) and RCAd enhanced transduction of replication defective adenoviruses (RDAd) have not been addressed well. In this study, we constructed viruses expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa. We then tested their roles in oncolysis and replication of RCAd as well as their roles in RCAd enhanced transfection rate and transgene expression of RDAd in various cancer cells in vitro and in xenografted human NCI-H460 tumors in nude mice. We demonstrated that RCAds expressing E1A alone and plus E1B-19 kDa exhibited an obvious ability in replication and oncolytic effects as well as enhanced RDAd replication and transgene expression, with the former showed more effective oncolysis, while the latter exhibited superior viral replication and transgene promotion activity. However, RCAd expressing both E1A and E1B-19 kDa/55 kDa was clearly worst in all these abilities. The effects of E1A and E1B observed through using RCAd were further validated by using plasmids expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa proteins. Our study provided evidence that E1A was essential for inducing replication and oncolytic effects of RCAd as well as RCAd enhanced RDAd transduction, and expression of E1B-19 kDa other than E1B-55 kDa could promote these effects. E1B-55 kDa is not necessary for the oncolytic effects of adenoviruses and somehow inhibits RCAd-mediated RDAd replication and transgene expression.


Subject(s)
Adenoviridae/genetics , Adenovirus E1A Proteins/metabolism , Adenovirus E1B Proteins/metabolism , Neoplasms, Experimental/metabolism , Adenoviridae/physiology , Adenovirus E1A Proteins/genetics , Adenovirus E1B Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Genetic Vectors , Heterografts , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Oncolytic Virotherapy , Transduction, Genetic , Virus Replication
16.
Cancer Res Treat ; 35(3): 191-206, 2003 Jun.
Article in English | MEDLINE | ID: mdl-26680936

ABSTRACT

PURPOSE: This study has been planned to generate a replication-competent adenovirus which replicates in a cancer cell-specific manner, thus minimizing the side effects and toxicity of cancer gene therapy. MATERIALS AND METHODS: we have generated an E1B 19 kD attenuated recombinant adenoviruses, Ad-TERT-delta19 and Ad-mTERT-delta19, which encode E1A gene driven by the wild type hTERT and modified m-hTERT promoter containing additional c-myc and Sp1 binding sites in the backbone of Ad-deltaE1B19. The in vitro efficacy and specificity of the hTERT and m-hTERT promoter have been evaluated by the comparison of viral replication and cytopathic effect in cancer cells and normal cell lines. To assess anti-tumor effect and safety of hTERT or m-hTERT promoter driven replication competent adenoviruses, tumor regression after subcutaneous injection in subcutaneous C33A xenografts and lacZ expression after systemic injection in organs were examined. RESULTS: The activation of hTERT or m-hTERT promoter was significantly up-regulated only in hTERT-positive cells, but not in hTERT-negative cells. Moreover, the activity of m-hTERT promoter was substantially increased in hTERT-positive cancer cells, but not in hTERT-negative cells. While Ad-TERT-delta19 replicated in and induced cytopathic effect in cancer and in some normal cell lines, Ad-mTERT-delta19 enhanced viral replication and cytopathic effect in cancer cells only. Furthermore, the growth of established human cervical carcinoma in nude mice was significantly suppressed by intratumoral injection of Ad-mTERT-delta19. CONCLUSION: S: The use of m-hTERT promoter is not only useful in the regulation of therapeutic gene expression but also that replication-competent oncolytic adenovirus under the control of m-hTERT promoter may be a new promising tool for the treatment of human malignancies.

17.
Cancer Res Treat ; 35(5): 425-32, 2003 Oct.
Article in English | MEDLINE | ID: mdl-26680969

ABSTRACT

PURPOSE: Replication-competent adenoviruses (Ads) are promising new modalities for the treatment of cancer. Selective replication of a viral agent in tumor may lead to improved efficacy over non-replicating Ads due to viral multiplication, lysis of the infected cancer cell and spread to surrounding cells. In our previous studies it was shown that the E1B 55 kD-deleted Ad (YKL-1) exhibits tumor specific replication and cell lysis, but with reduced cytolytic effects compared to the wild type adenovirus (Int J Cancer 2000;88: 454-463). Thus, improving the potency of oncolytic Ads remains an important goal for cancer gene therapy. To increase the oncolytic ability of YKL-1, an adenovirus death protein (ADP) gene was reintroduced under the control of a CMV or MLP promoter at the E3 region of the YKL-1, generating an YKL-cADP and YKL-mADP, respectively. MATERIALS AND METHODS: The in vitro cytolytic effect of ADP expressing Ads was evaluated by MTT assay, and the induction of apoptosis by ADP expressing Ads was examined by TUNEL analysis. Finally, the antitumor effect of ADP expressing Ads was demonstrated in C33A xenograft tumor model. RESULTS: The YKL-cADP exerted a markedly enhanced cytolytic effect against H460 and SK-Hep1 cancer cell lines. The TUNEL assay indicated that the ADP-mediated cytotoxicity was largely driven by apoptosis. Finally, the YKL-cADP showed a superior antitumor effect than the YKL-1 or YKL-mADP in C33A xenografts. CONCLUSION: These lines of evidence demonstrate that the YKL-cADP induces efficient cell lysis, which is critical for the addition of therapeutic value to replicating Ads in cancer gene therapy.

18.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-75798

ABSTRACT

PURPOSE: This study has been planned to generate a replication-competent adenovirus which replicates in a cancer cell-specific manner, thus minimizing the side effects and toxicity of cancer gene therapy. MATERIALS AND METHODS: we have generated an E1B 19 kD attenuated recombinant adenoviruses, Ad-TERT-delta19 and Ad-mTERT-delta19, which encode E1A gene driven by the wild type hTERT and modified m-hTERT promoter containing additional c-myc and Sp1 binding sites in the backbone of Ad-deltaE1B19. The in vitro efficacy and specificity of the hTERT and m-hTERT promoter have been evaluated by the comparison of viral replication and cytopathic effect in cancer cells and normal cell lines. To assess anti-tumor effect and safety of hTERT or m-hTERT promoter driven replication competent adenoviruses, tumor regression after subcutaneous injection in subcutaneous C33A xenografts and lacZ expression after systemic injection in organs were examined. RESULTS: The activation of hTERT or m-hTERT promoter was significantly up-regulated only in hTERT-positive cells, but not in hTERT-negative cells. Moreover, the activity of m-hTERT promoter was substantially increased in hTERT-positive cancer cells, but not in hTERT-negative cells. While Ad-TERT-delta19 replicated in and induced cytopathic effect in cancer and in some normal cell lines, Ad-mTERT-delta19 enhanced viral replication and cytopathic effect in cancer cells only. Furthermore, the growth of established human cervical carcinoma in nude mice was significantly suppressed by intratumoral injection of Ad-mTERT-delta19. CONCLUSIONS: The use of m-hTERT promoter is not only useful in the regulation of therapeutic gene expression but also that replication-competent oncolytic adenovirus under the control of m-hTERT promoter may be a new promising tool for the treatment of human malignancies.


Subject(s)
Animals , Humans , Mice , Adenoviridae , Binding Sites , Cell Line , Gene Expression , Genes, Neoplasm , Heterografts , Injections, Subcutaneous , Mice, Nude , Sensitivity and Specificity , Telomerase
19.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-83757

ABSTRACT

PURPOSE: Replication-competent adenoviruses (Ads) are promising new modalities for the treatment of cancer. Selective replication of a viral agent in tumor may lead to improved efficacy over non-replicating Ads due to viral multiplication, lysis of the infected cancer cell and spread to surrounding cells. In our previous studies it was shown that the E1B 55 kD-deleted Ad (YKL-1) exhibits tumor specific replication and cell lysis, but with reduced cytolytic effects compared to the wild type adenovirus (Int J Cancer 2000;88: 454-463). Thus, improving the potency of oncolytic Ads remains an important goal for cancer gene therapy. To increase the oncolytic ability of YKL-1, an adenovirus death protein (ADP) gene was reintroduced under the control of a CMV or MLP promoter at the E3 region of the YKL-1, generating an YKL-cADP and YKL-mADP, respectively. MATERIALS AND METHODS: The in vitro cytolytic effect of ADP expressing Ads was evaluated by MTT assay, and the induction of apoptosis by ADP expressing Ads was examined by TUNEL analysis. Finally, the antitumor effect of ADP expressing Ads was demonstrated in C33A xenograft tumor model. RESULTS: The YKL-cADP exerted a markedly enhanced cytolytic effect against H460 and SK-Hep1 cancer cell lines. The TUNEL assay indicated that the ADP-mediated cytotoxicity was largely driven by apoptosis. Finally, the YKL-cADP showed a superior antitumor effect than the YKL-1 or YKL-mADP in C33A xenografts. CONCLUSION: These lines of evidence demonstrate that the YKL-cADP induces efficient cell lysis, which is critical for the addition of therapeutic value to replicating Ads in cancer gene therapy.


Subject(s)
Adenosine Diphosphate , Adenoviridae , Apoptosis , Cell Line , Genes, Neoplasm , Heterografts , In Situ Nick-End Labeling
20.
Cancer Res Treat ; 33(6): 500-11, 2001 Dec.
Article in English | MEDLINE | ID: mdl-26680830

ABSTRACT

PURPOSE: Gene-attenuated replication-competent adenoviruses are emerging as a promising new modality for the treatment of cancer. In an effort to continually improve upon cancer gene therapy, we have modified gene- attenuated replication-competent adenoviruses so as to cause them to replicate efficiently and lyse the infected cancer cells more effectively. MATERIALS AND METHODS: We modified the E1 region of the adenovirus (Ad) systematically, generating Ad-deltaE1B19, Ad-deltaE1B55, Ad-deltaE1B19/55, and Ad-WT. The cytopathic effects (CPE) and viral replication of these four gene modified adenoviruses were compared, and the morphology and DNA fragmentation of the infected cells was evaluated. RESULTS: Among the constructed adenoviruses, E1B 19kD-inactivated adenovirus (Ad-deltaE1B19) was the most potent, inducing the largest-sized plaques and markedCPE. Moreover, cells infected with Ad-deltaE1B19 showed complete cell lysis with disintegrated cellular structure whereas cells infected with Ad-WT maintained intact cellular and nuclear membrane with properly structured organelles. TUNEL assay was also used to monitor DNA integrity, and a more profound induction of apoptosis was observed in the Ad-deltaE1B19 infected cells in comparison to wild type adenovirus infected cells. CONCLUSION: We demonstrate that the inactivation of the E1B19kD gene in a replicating adenovirus leads to increased CPE, rapid viral release, improved cell-to-cell viral spread and increased induction of apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...