Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.307
Filter
1.
Front Oncol ; 14: 1451650, 2024.
Article in English | MEDLINE | ID: mdl-39309735

ABSTRACT

Tumor immune microenvironment (TIME) is a tiny structure that contains multiple immune cell components around tumor cells, which plays an important role in tumorigenesis, and is also the potential core area of activated immunotherapy. How immune cells with tumor-killing capacity in TIME are hijacked by tumor cells during the progression of tumorigenesis and transformed into subpopulations that facilitate cancer advancement is a question that needs to be urgently addressed nowadays. γδ T cells (their T cell receptors are composed of γ and δ chains), a unique T cell subpopulation distinguished from conventional αß T cells, are involved in a variety of immune response processes through direct tumor-killing effects and/or indirectly influencing the activity of other immune cells. However, the presence of γδ T cells in the tumor microenvironment (TME) has been reported to be associated with poor prognosis in some tumors, suggesting that certain γδ T cell subsets may also have pro-tumorigenic effects. Recent studies have revealed that metabolic pathways such as activation of glycolysis, increase of lipid metabolism, enhancement of mitochondrial biosynthesis, alterations of fatty acid metabolism reshape the local TME, and immune cells trigger metabolic adaptation through metabolic reprogramming to meet their own needs and play the role of anti-tumor or immunosuppression. Combining previous studies and our bioinformatics results, we hypothesize that γδT cells compete for resources with hepatocellular carcinoma (HCC) cells by means of fatty acid metabolic regulation in the TME, which results in the weakening or loss of their ability to recognize and kill HCC cells through genetic and epigenetic alterations, thus allowing γδT cells to be hijacked by HCC cells as a subpopulation that promotes HCC progression.

2.
Heliyon ; 10(18): e37374, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309926

ABSTRACT

Background: Glioblastoma (GBM) is a very common primary malignant tumor of the central nervous system (CNS). Aging, macrophage, autophagy, and methylation related genes are hypothesized to be crucial to its pathogenesis. In this study, we aimed to explore the role of these genes in the prognosis of GBM. Methods: The RNA sequence (RNA-seq) and clinical information were downloaded from The Cancer Genome Atlas database (TCGA) and the Chinese Glioma Genome Atlas database (CGGA). We performed univariate and least absolute shrinkage and selection operator (LASSO) multivariate Cox regression analysis to identify risk signatures related to overall survival (OS). We further developed a nomogram to predict individual outcomes. In addition, the immune microenvironment was analyzed by CIBERSORT. Results: 256 differentially expressed genes (DEGs) were obtained based on aging, macrophage, autophagy, and methylation related genes between GBM samples and normal tissues in TCGA-GBM cohort. We identified five optimal risk signatures with prognostic values in TCGA-GBM cohort and established a prognostic risk score model. The validity of the model was verified in the CGGA cohort and Huanhu cohort. Finally, we constructed a nomogram for clinical application by combining age, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, and risk score. Activated NK cells and resting mast cells were highly expressed and memory B cells, plasma cells, resting NK cells, M1 macrophages, and neutrophils exhibited low expression in the high-risk score group. GBM patients with a low-risk score had a higher Tumor Immune Dysfunction and Exclusion (TIDE) score. The risk score of hot tumors was higher than that of the cold tumors. Additionally, 29 genes involved in glucose and lipid metabolism were highly expressed with a high-risk score. 31 metabolism-related pathways were significantly different between high-risk and low-risk groups. Conclusions: We constructed and validated a novel prognostic model for GBM. Aging, macrophage, autophagy, and methylation related genes may serve as prognostic and therapeutic biomarkers. The model developed may assist in guiding treatment for GBM patients. Our research had great significance in accurately predicting the prognosis of GBM and may offer reference for immunotherapy decision for GBM patients.

3.
Biomed Mater ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312952

ABSTRACT

The present study has been designed to fabricate fungal endophyte assisted gold nanoparticles and elucidate their anti-breast cancer potential. The aqueous extract of fungal endophyte, Penicillium oxalicum, associated with the medicinal plant Amoora rohituka has been used for the fabrication of gold nanoparticles (POAuNPs). The physicochemical characterization using UV-Vis spectroscopy, FTIR, XRD, DLS, Zeta potential, TEM and FESEM analysis revealed stable, uniform distribution, spherical-shape and crystalline nature of POAuNPs with size range of 3-46 nm. Further, POAuNPs potentially inhibited the growth of pathogenic bacterial strains, E. coli and S. aureus. The synthesized POAuNPs has shown potential antioxidant effects against DPPH, superoxide and nitric oxide radical scavenging assay with an EC50 value of 8.875±0.082, 52.593±2.506 and 43.717±1.449 µg/mL, respectively. Moreover, the value of EC50 for total antioxidant capacity of POAuNPs was found to be 23.667±1.361 µg/mL. The cell viability of human breast cancer cells, MDA-MB-231 and MCF-7 was found to be reduced after treatment with POAuNPs and IC50 values were found to be 19.753±0.640 and 35.035±0.439 µg/mL respectively. Further, in vitro biochemical assays revealed POAuNPs induced metabolic reprogramming in terms of reduced glucose uptake and increased LDH release and, disruption of oxidative balance through depletion of GSH level, increased nitric oxide level and lipid peroxidation as a possible pathway to suppress the human breast cancer cell proliferation. Apoptosis-specific nuclear modulations induced by POAuNPs in human breast cancer cells were validated through DAPI nuclear staining. The present investigation thus attempted to show first ever fabrication of gold nanoparticles using aqueous extract of P. oxalicum associated with A. rohituka. The results revealed unique physico-chemical characteristics of myogenic gold nanoparticles and screening their effect against breast cancer via metabolic reprogramming and induction of apoptosis thus adds great significance against cancer therapeutics, suggesting further exploration to develop nanotherapeutic drugs.

4.
Exp Brain Res ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316096

ABSTRACT

Efficient responses in dynamic environments rely on a combination of readiness and flexibility, regulated by anticipatory and online response control mechanisms. The latter are required when a motor response needs to be reprogrammed or when flanker stimuli induce response conflict and they are crucially modulated by anticipatory signals such as response and conflict expectations. The mutual influence and interplay of these control processes remain to be elucidated. Our behavioral study employed a novel combined response cueing/conflict task designed to test for interactive effects of response reprogramming and conflict resolution and their modulation by expectations. To this end, valid and invalid response cues were combined with congruent and incongruent target flankers. Expectations were modulated by systematically manipulating the proportions of valid versus invalid cues and congruent versus incongruent flanker stimuli in different task blocks. Reaction time and accuracy were assessed in thirty-one healthy volunteers. The results revealed response reprogramming and conflict resolution interactions for both behavioral measures, modulated by response and conflict expectations. Accuracy decreased disproportionally when invalidly cued targets with incongruent flankers were least expected. These findings support coordinated and partially overlapping anticipatory and online response control mechanisms within motor-cognitive networks.

5.
Front Immunol ; 15: 1454314, 2024.
Article in English | MEDLINE | ID: mdl-39315110

ABSTRACT

Unlike conventional CD4+ T cells, which are phenotypically and functionally plastic, invariant NKT (iNKT) cells generally exist in a terminally differentiated state. Naïve CD4+ T cells can acquire alternative epigenetic states in response to different cues, but it remains unclear whether peripheral iNKT cells are epigenetically stable or malleable. Repetitive encounters of liver-resident iNKT cells (LiNKTs) with alpha-galactosylceramide (αGalCer)/CD1d-coated nanoparticles (NPs) can trigger their differentiation into a LiNKT cell subset expressing a T regulatory type 1 (TR1)-like (LiNKTR1) transcriptional signature. Here we dissect the epigenetic underpinnings of the LiNKT-LiNKTR1 conversion as compared to those underlying the peptide-major histocompatibility complex (pMHC)-NP-induced T-follicular helper (TFH)-to-TR1 transdifferentiation process. We show that gene upregulation during the LINKT-to-LiNKTR1 cell conversion is associated with demethylation of gene bodies, inter-genic regions, promoters and distal gene regulatory elements, in the absence of major changes in chromatin exposure or deposition of expression-promoting histone marks. In contrast, the naïve CD4+ T cell-to-TFH differentiation process involves extensive remodeling of the chromatin and the acquisition of a broad repertoire of epigenetic modifications that are then largely inherited by TFH cell-derived TR1 cell progeny. These observations indicate that LiNKT cells are epigenetically malleable and particularly susceptible to gene de-methylation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Liver , Natural Killer T-Cells , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Animals , Liver/immunology , Liver/cytology , Liver/metabolism , Mice , Cell Differentiation/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice, Inbred C57BL , Galactosylceramides , Transcription, Genetic , Antigens, CD1d/genetics , Antigens, CD1d/metabolism
6.
Article in English | MEDLINE | ID: mdl-39318020

ABSTRACT

Phytosomes, innovative lipid-compatible complexes formed by combining natural phospholipids with water-soluble phytoconstituents, represent a groundbreaking technology in herbal medicine. This review examines the novel applications of phytosomes in liver cancer treatment. Phytosome technology overcomes traditional obstacles in utilizing herbal potential for modern medicine, such as issues with potency, solubility, permeability, and stability, which has led to increased interest in herbal drug sources. By enhancing the bioavailability and bioefficacy of polyphenolic phytoconstituents, particularly those with anti-angiogenic properties critical for tumor growth and embryonic nourishment, phytosome technology addresses these challenges. The complexity of liver cancer, including both cholangiocarcinoma and hepatocellular carcinoma, demands comprehensive medical management. Although natural compounds like resveratrol, curcumin, and silymarin show promise with their anticancer effects, their full efficacy in human trials is not yet confirmed. Phytosomal preparations, which incorporate these compounds into lipid complexes, offer a potential solution for improved bioavailability and absorption. This review thoroughly explores the application of phytosome technology in herbal medicine, highlighting its potential role in tackling the complexities of liver cancer treatment. As research advances, phytosomes are expected to be a valuable addition to the evolving field of natural product-based therapeutic formulations.

7.
Mol Nutr Food Res ; : e2400310, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39318069

ABSTRACT

SCOPE: Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects. METHODS AND RESULTS: The present study examines the role of mmBCFAs in modulating macrophage polarization. The results demonstrate that iso-C16:0 significantly inhibits macrophages M1 proinflammatory polarization through regulating FABP4/PPAR-γ pathway. Proteomics and molecular biology experiments verify that metabolic reprogramming is involved in the inhibition of M1 macrophage, referring to the upregulation of fatty acid oxidation, TCA cycle, and oxidative phosphorylation, as well as downregulation of glycolytic flux. CONCLUSION: In summary, this study offers a novel perspective on the antiinflammatory effects mediated by mmBCFAs.

8.
Immunol Res ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320693

ABSTRACT

Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given that abnormal reprogramming of asparagine metabolism (AM) has emerged as an emerging therapeutic target for anti-tumor therapy. However, the clinical significance of abnormal reprogramming of AM in LUAD patients is unclear. In this study, we collected 864 asparagine metabolism-related genes (AMGs) and used a machine-learning computational framework to develop an asparagine metabolism immunity index (AMII) for LUAD patients. Through the utilization of median AMII scores, LUAD patients were segregated into either a low-AMII group or a high-AMII group. We observed outstanding performance of AMII in predicting survival prognosis in LUAD patients in the TCGA-LUAD cohort and in three externally independently validated GEO cohorts (GSE72094, GSE37745, and GSE30219), and poorer prognosis for LUAD patients in the high-AMII group. The results of univariate and multivariate analyses showed that AMII can be used as an independent risk factor for LUAD patients. In addition, the results of C-index analysis and decision analysis showed that AMII-based nomograms had a robust performance in terms of accuracy of prognostic prediction and net clinical benefit in patients with LUAD. Excitingly, LUAD patients in the low-AMII group were more sensitive to commonly used chemotherapeutic drugs. Consequently, AMII is expected to be a novel diagnostic tool for clinical classification, providing valuable insights for clinical decision-making and personalized management of LUAD patients.

9.
Elife ; 132024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325039

ABSTRACT

A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.


Subject(s)
Neurons , Animals , Humans , Neurons/physiology , Pyramidal Tracts/physiology , Mice , Cell Differentiation
10.
J Exp Clin Cancer Res ; 43(1): 266, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342365

ABSTRACT

Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Phenotype , Humans , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Immunotherapy/methods , Tumor Microenvironment/immunology
11.
J Biol Chem ; : 107824, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343008

ABSTRACT

RNA-binding proteins (RBPs) regulate totipotency, pluripotency maintenance, and induction. The intricacies of how they modulate these processes through their interaction with RNAs remain to be elucidated. Here we employed Targets of RBPs Identified By Editing (TRIBE) with single-cell resolution (scTRIBE) to profile the mRNA targets of the key pluripotency regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell embryo-like cells (2CLCs) and somatic cell reprogramming. LIN28A is known to act by controlling the maturation of the let-7 microRNA but, in addition, it binds to multiple mRNAs and influences their stability and translation efficiency. However, the mRNA targets of LIN28A in 2CLCs and reprogramming are unclear. Through quantitative single-cell analysis of the scTRIBE dataset, we observed a marked increase in the binding of LIN28A to mRNAs of ribosome biogenesis factors and a selected group of totipotency factors in 2CLCs within ESC cultures. Our results suggest that LIN28A extends the half-life of at least some of these mRNAs, providing new insights into its role in the totipotent state. We also uncovered the distinct trajectory-specific LIN28A-mRNA networks in reprogramming, helping explain how LIN28A facilitates the mesenchymal-to-epithelial transition and pluripotency acquisition. Our study not only clarifies the multifunctional role of LIN28A in these processes but also highlights the importance of decoding RNA-protein interactions at the single-cell level.

12.
J Exp Clin Cancer Res ; 43(1): 268, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343960

ABSTRACT

BACKGROUND: Metabolic reprogramming plays a pivotal role in tumorigenesis and development of lung adenocarcinoma (LUAD). However, the precise mechanisms and potential targets for metabolic reprogramming in LUAD remain elusive. Our prior investigations revealed that the mitochondrial ribosomal protein MRPL12, identified as a novel mitochondrial transcriptional regulatory gene, exerts a critical influence on mitochondrial metabolism. Despite this, the role and regulatory mechanisms underlying MRPL12's transcriptional activity in cancers remain unexplored. METHODS: Human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD mouse models, LUAD patient-derived organoids (PDO), and LUAD cell lines were used to explored the expression and function of MRPL12. The posttranslational modification of MRPL12 was analyzed by mass spectrometry, and the oncogenic role of key phosphorylation sites of MRPL12 in LUAD development was verified in vivo and in vitro. RESULTS: MRPL12 was upregulated in human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD tissues in mice, LUAD PDO, and LUAD cell lines, correlating with poor patient survival. Overexpression of MRPL12 significantly promoted LUAD tumorigenesis, metastasis, and PDO formation, while MRPL12 knockdown elicited the opposite phenotype. Additionally, MRPL12 deletion in a Tp53fl/fl;KrasG12D-driven mouse LUAD model conferred a notable survival advantage, delaying tumor onset and reducing malignant progression. Mechanistically, we discovered that MRPL12 promotes tumor progression by upregulating mitochondrial oxidative phosphorylation. Furthermore, we identified UBASH3B as a specific binder of MRPL12, dephosphorylating tyrosine 60 in MRPL12 (MRPL12 Y60) and inhibiting its oncogenic functions. The decrease in MRPL12 Y60 phosphorylation impeded the binding of MRPL12 to POLRMT, downregulating mitochondrial metabolism in LUAD cells. In-depth in vivo, in vitro, and organoid models validated the inhibitory effect of MRPL12 Y60 mutation on LUAD. CONCLUSION: This study establishes MRPL12 as a novel oncogene in LUAD, contributing to LUAD pathogenesis by orchestrating mitochondrial metabolism reprogramming towards oxidative phosphorylation (OXPHOS). Furthermore, it confirms Y60 as a specific phosphorylation modification site regulating MRPL12's oncogenic functions, offering insights for the development of LUAD-specific targeted drugs and clinical interventions.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mitochondria , Humans , Mice , Animals , Mitochondria/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Phosphorylation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Disease Models, Animal , Cell Line, Tumor , Metabolic Reprogramming
13.
Int J Mol Sci ; 25(18)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39337465

ABSTRACT

Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Glycolysis , Virus Replication , Pentose Phosphate Pathway , Citric Acid Cycle
14.
Ecotoxicol Environ Saf ; 283: 116952, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39217895

ABSTRACT

Prolonged inhalation of environmental crystalline silica (CS) can cause silicosis, characterized by persistent pulmonary inflammation and irreversible fibrosis, but the mechanism has not been elucidated. To uncover the role and underlying mechanism of glycolytic reprogramming in CS-induced pulmonary inflammation, the mouse silicosis models and glycolysis inhibition models were established in vivo. And the CS-induced macrophage activation models were utilized to further explore the underlying mechanism in vitro. The results showed that CS induced lung inflammation accompanied by glycolytic reprogramming and pyroptosis. The application of glycolysis inhibitor (2-DG) suppressed CS-induced pyroptosis and alleviated lung inflammation. In vitro, 2-DG effectively impeded CS-induced macrophage pyroptosis and inflammatory response. Mechanistically, 2-DG suppressed pyroptosis by inhibiting NLRP3 inflammasome activation both in vivo and in vitro. Furtherly, metabolite lactate facilitated NLRP3-dependent pyroptosis synergistically with CS particles, while blocking the source of lactate largely alleviated NLRP3 inflammasome activation and subsequent pyroptosis triggered by CS. More profoundly, the increment of lactate induced by CS might drive NLRP3-dependent pyroptosis by increasing histone lactylation levels. In conclusion, our findings demonstrated inhibiting glycolytic reprogramming could alleviate CS-induced inflammatory response through suppressing NLRP3 -dependent pyroptosis. Increased glycolytic metabolite lactate and protein lactylation modifications might represent significant mechanisms during CS-induced NLRP3 activation and macrophage pyroptosis.


Subject(s)
Glycolysis , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Silicon Dioxide , Pyroptosis/drug effects , Animals , Glycolysis/drug effects , Silicon Dioxide/toxicity , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/chemically induced , Mice, Inbred C57BL , Silicosis/pathology , Silicosis/metabolism , Inflammasomes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Disease Models, Animal
15.
Cardiovasc Res ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253990

ABSTRACT

AIMS: Organs modulating blood pressure are associated with a common cytokine known as adipokines. We chose Zinc-alpha2-glycoprotein (ZAG) due to its prioritized transcriptional level in the database. Previous studies showed that ZAG is involved in metabolic disorders. The aim of this study was to investigate its role in hypertension. METHODS AND RESULTS: Serum ZAG levels were assessed in hypertensive and healthy participants. Blood pressure was monitored in Azgp1-/- mice and other animal models by 24-hour ambulatory implanted telemetric transmitters and tail-cuff method. Multi-omics analysis of proteomics and metabolomics were performed to explore possible mechanisms. Serum ZAG levels were significantly decreased and associated with morning urine Na+ excretion in hypertensive participants in a cross-sectional study. This study firstly reported that Azgp1-/- mice exhibited increased blood pressure and impaired urinary Na+ excretion, which were restored by AAV9-mediated renal tubule Azgp1 rescue. Azgp1 knockout caused the reprogramming of renal lipid metabolism, and increased Na+/H+-exchanger (NHE) activity in the renal cortex. Administration with a NHE inhibitor EIPA reversed the impaired urinary Na+ excretion in Azgp1-/- mice. Moreover, the activity of carnitine palmitoyltransferase 1 (CPT1), a key enzyme of fatty acid ß-oxidation, was decreased, and the levels of malonyl-CoA, an inhibitor of CPT1, were increased in renal cortex of Azgp1-/- mice. Renal Cpt1 rescue improved urinary Na+ excretion and blood pressure in Azgp1-/- mice, accompanied by decreased renal fatty acid levels and NHE activity. Finally, administration of recombinant ZAG protein improved blood pressure and urinary Na+ excretion in SHRs. CONCLUSIONS: Deficiency of Azgp1 increased the malonyl CoA-mediated inhibition of CPT1 activity, leading to renal lipid metabolism reprogramming, resulting in accumulated fatty acids and increased NHE activity, subsequently decreasing urinary Na+ excretion and causing hypertension. These findings may provide a potential kidney-targeted therapy in the prevention and treatment of hypertension.

16.
Cell Mol Gastroenterol Hepatol ; : 101395, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218152

ABSTRACT

The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.

17.
J Ethnopharmacol ; 337(Pt 1): 118825, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278294

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cooling Blood and Detoxicating Formular (CBDF) based on the theory of cooling blood and dosing detoxification, is a useful traditional Chinese medicine (TCM) medication for psoriasis with blood-heat syndrome. AIM OF THE STUDY: Investigate the active constituents and mechanisms of the CBDF for the treatment of psoriasis. MATERIALS AND METHODS: UPLC-Q-Orbitrap-HRMS technique was used to analyse the ingredients of CBDF absorbed into plasma and skin tissue. The therapeutic efficacy of CBDF was evaluated in treating an imiquimod (IMQ)-induced mouse model was assessed. Transcriptome analysis and gene enrichment analysis were used to explore the changes in gene expression and pathways following treatment with the CBDF. Validation was performed using western blotting, quantitative RT-PCR, flow cytometry, gene knockout and molecular docking in vitro and in vivo. RESULTS: 26 compounds were identified in the plasma of IMQ-induced psoriasis-like mouse with CBDF treatment, and higher levels of cimifugin in the lesion. CBDF improved the pathological changes of psoriasis, with inhibition of TNF-α, IL-23, and IL-17A and upregulation of IL-10. Gene enrichment analysis showed that the therapeutic effect of CBDF was related to AMPK pathway. In psoriasis lesions, the AMPK and fatty acid oxidation were suppressed, and glycolysis was enhanced. The Prkaa2, encoding AMPKα2 was down-regulated in psoriasis patients. CBDF inhibited glycolysis while stimulating fatty acid oxidation by the activating AMPK, thereby exerting an inhibitory effect on inflammation. CBDF inhibited MHCII, CD80, and CD86 on dendritic cells of skin drainage lymph node. In vitro, CBDF inhibited bone marrow-derived DCs secrete IL-23, TNF-α, and lactate, while enhanced fatty acid oxidation and AMPK activity. However, the therapeutic effect was weakened in AMPKα2 deletion. Additionally, psoriasis lesions and dendritic cells activation were significantly aggravated after AMPKα2 knockout. The key ingredients of the CBDF, cimifugin, rutin, astilbin, quercetin, and prim-O-glucosylcimifugin, all exhibit a notable affinity towards AMPKα2 binding. CONCLUSIONS: CBDF ameliorates psoriasis symptoms and inhibit dendritic cells maturation by regulating metabolic reprogramming in an AMPK-dependent mechanism.

18.
Stem Cell Res ; 81: 103554, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39276529

ABSTRACT

In this study, PBMCs used in reprogramming were from a boy suffered from AUTS2 syndrome confirmed by clinical and genetic diagnosis. iPSCs were established by non-integrated method, which carried AUTS2 heterozygous mutation. The established iPSCs presented similar appearance and expressed pluripotent markers in mRNA and protein level. Additionally, the iPSCs possessed favorable differentiative capacity in vivo and normal karyotype. This is an effective potential model for the study about AUTS2 syndrome and the screen about drug therapy.

19.
Int Rev Immunol ; : 1-14, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267425

ABSTRACT

In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.

20.
Cell Regen ; 13(1): 17, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269631

ABSTRACT

Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.

SELECTION OF CITATIONS
SEARCH DETAIL