Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Bot ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365061

ABSTRACT

Resupination refers to the developmental orientation changes of flowers through ≈180º, leaving them effectively upside-down. It is a widespread trait present in 14 angiosperm families, including the Orchidaceae, where it is a gravitropic phenomenon actively controlled by auxins. Here, we demonstrate that the passive gravitational pull on flower parts can have an additional influence on resupination. We studied a lady's slipper orchid in which some flowers naturally fail to resupinate. We conducted a manipulative experiment removing floral parts and showed that both the probability of complete resupination and the degree of flower vertical movement (from 0º - 180º) are related to the mass of floral organs. During flower development, the tip of the ovary slightly curves actively (14.75º) due to gravitropism. This promotes a lever arm effect so that the gravitational pull acting on flower mass creates a torque that bends the ovary, orienting the flower into a resupinate position that is accessible to pollinators. The role of the mass of floral organs in resupination provides new insights into flower development and its role in pollination mechanisms.

2.
Plant Biol (Stuttg) ; 26(1): 34-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37856560

ABSTRACT

In many families, plants undergo floral resupination by twisting through approximately 180° during floral development so that the flower is effectively positioned upside down. In most orchids, resupination results in the median petal (i.e., the labellum) becoming lowermost, which plays a crucial role in pollination by serving as a landing platform or as a trapping device, or both. Incomplete resupination is predicted to lead to reduced pollination, although tests of this assumption are still lacking. We investigated the effect of resupination using Phragmipedium vittatum, a rare lady's slipper orchid whose specialized labellum forms a trapping device. First, we surveyed the natural occurrence of incomplete resupination. Then we manipulated flowers into non- (≈0°), half- (≈90°), and fully resupinate (≈180°) positions to test the effect of orientation on pollen smear removal and deposition by pollinators (female hoverflies). We found that ca. 10% of flowers in the natural population were not fully resupinate, being either non- (upward, 0-60°) or half-resupinate (sideward, 60-120°). The change in orientation prevented the effectiveness of pollination by hoverflies since no pollen smear removal or deposition were found in flowers from non- and half-resupinate treatments. Although these flowers still attracted hoverflies, they were not trapped effectively. As this orchid is incapable of autonomous self-pollination, flowers that do not resupinate fail to set fruits. These results highlight the importance of correct floral orientation provided by resupination to ensure pollination in orchids and other resupinate flowers.


Subject(s)
Orchidaceae , Pollination , Humans , Flowers , Pollen , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL