Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 614
Filter
1.
Cells ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39056810

ABSTRACT

Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.


Subject(s)
Antioxidants , Mesenchymal Stem Cells , Placenta , Plant Extracts , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Antioxidants/pharmacology , Plant Extracts/pharmacology , Female , Placenta/metabolism , Placenta/drug effects , Pregnancy , Achyranthes/chemistry , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Cell Proliferation/drug effects , Cell Line
2.
Endocr Metab Immune Disord Drug Targets ; : e210224227253, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38988068

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS: A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS: We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION: Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.

3.
J Ophthalmic Vis Res ; 19(2): 183-195, 2024.
Article in English | MEDLINE | ID: mdl-39055499

ABSTRACT

Purpose: To investigate the short-term effects of low-level lasers (LLLs; also known as low-power laser therapy) on the structure, genetic, and phenotype of cultured human retinal pigment epithelial (hRPE) cells from both adult and neonatal sources. Methods: Cultivated adult and neonatal hRPE cells were irradiated with two types of LLL (630 nm and 780 nm), 1 min daily for five consecutive days. Results: An increase in doubling time was observed in 630 nm-irradiated adult hRPE cells (P = 0.032). The gene expression profile revealed increased expression of retinoid isomerohydrolase RPE65 (RPE65) (P < 0.01 for 630 nm laser, P < 0.001 for 780 nm laser) and nestin (NES) (P < 0.01 for 630 nm laser) in neonatal hRPE cells, upregulation of RPE65 (P < 0.001 for 780 nm laser) and paired box 6 (PAX6) (P < 0.001 for 780 nm laser) genes in adult hRPE cells, and reduced expression of actin alpha 2 (ACTA2) in 780 nm-irradiated adult hRPE cells (P < 0.001). Except the significant increase of α -SMA in 780 nm-irradiated neonatal hRPE cells, no significant change was noted in the expressions of other investigated proteins. Conclusion: Short-term irradiation of neonatal and adult hRPE cells with LLLs may induce multipotency at the transcriptional level. Irradiation of neonatal hRPE cells with LLLs can be associated with increased risk of myofibroblastic transformation; however, adult hRPE cells irradiated with the 780 nm laser have minimal risk of myofibroblastic differentiation. It seems that the 780 nm laser may be a promising option for future photobiomodulation in retinal degenerations in adults.

4.
Exp Cell Res ; 441(2): 114170, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019426

ABSTRACT

Diabetic retinopathy (DR) is a major cause of vision loss and blindness in adults. Cellular senescence was involved in the pathogenesis of early-stage DR and is positively correlated with progression. Thus, our study aimed at exploring the effect and potential mechanism of Mesenchymal stem cells-derived exosomes (MSCs-EXOs) on Retinal Pigment Epithelial (RPE) cells senescence at an early stage of DR in vivo and in vitro. ARPE-19 cells were incubated in high glucose (HG) medium mixed with MSCs-EXOs to observe the changes in cell viability. Senescence-associated ß-galactosidase (SA-ß-gal) staining, Western blot and qRT-PCR were used to assess the expression of senescence-related genes and antioxidant mediators. Quantitative Real-Time polymerase chain reaction (qRT-PCR), Optical coherence tomography (OCT) Hematoxylin and eosin (HE) staining and Electroretinogram (ERG) were respectively used to verify cellular senescence, the structure and function of the retina. Our findings demonstrated that MSCs-EXOs inhibited HG-induced senescence in ARPE-19 cells. Furthermore, MSCs-EXOs reduced HG-induced cell apoptosis and oxidative stress levels while promoting cell proliferation. Mechanistically, HG suppressed PI3K/AKT phosphorylation as well as nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with its downstream target gene expression in ARPE-19 cells. However, MSCs-EXOs reversed these changes by alleviating cellular senescence while enhancing antioxidant activity. In line with our results in vitro, MSCs-EXOs significantly ameliorated hyperglycemia-induced senescence in DR mice by downregulating mRNA expression of P53, P21, P16, and SASP. Additionally, MSCs-EXOs improved the functional and structural integrity of the retina in DR mice. Our study revealed the protective effect of MSCs-EXOs on cellular senescence, offering new insights for the treatment of DR.

5.
Int J Ophthalmol ; 17(7): 1232-1237, 2024.
Article in English | MEDLINE | ID: mdl-39026923

ABSTRACT

AIM: To examine the regulatory role of microRNA-204 (miR-204) on silent information regulator 1 (SIRT1) and vascular endothelial growth factor (VEGF) under high-glucose-induced metabolic memory in human retinal pigment epithelial (hRPE) cells. METHODS: Cells were cultured with either normal (5 mmol/L) or high D-glucose (25 mmol/L) concentrations for 8d to establish control and high-glucose groups, respectively. To induce metabolic memory, cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d. In addition, exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control, miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to detect miR-204 mRNA levels. SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot. Flow cytometry was used to investigate apoptosis rate. RESULTS: It was found that high glucose promoted miR-204 and VEGF expression, and inhibited SIRT1 activity, even after the return to normal glucose culture conditions. Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression. However, downregulation of miR-204 produced the opposite effects. CONCLUSION: The study identifies that miR-204 is the upstream target of SIRT1 and VEGF, and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.

6.
Regen Biomater ; 11: rbae081, 2024.
Article in English | MEDLINE | ID: mdl-39040514

ABSTRACT

Proliferative vitreoretinopathy (PVR) is a common cause of vision loss after retinal reattachment surgery and ocular trauma. The key pathogenic mechanisms of PVR development include the proliferation, migration and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) activated by the growth factors and cytokines after surgery. Although some drugs have been tried in PVR treatments as basic investigations, the limited efficacy remains an obstacle, which may be due to the single pharmacological action and lack of targeting. Herein, the anti-proliferative Daunorubicin and anti-inflammatory Dexamethasone were co-loaded in the RPEs-derived exosomes (Exos), obtaining an Exos-based dual drug-loaded nanocarrier (Exos@D-D), and used for multiple PVR therapy. Owing to the advantages of homologous Exos and the dual drug loading, Exos@D-D showed good RPEs targeting as well as improved uptake efficiency, and could inhibit the proliferation, migration, as well as EMT of RPEs effectively. The animal studies have also demonstrated that Exos@D-D effectively inhibits the production of proliferative membranes and prevents the further development of inflammation, shows significant therapeutic effects on PVR and good biocompatibility. Such Exos-based dual drug-loaded nanocarrier investigation not only provides a promising approach for multifunctional exosome drug delivery systems construction, but also has great potential in PVR clinical therapy application.

7.
Acta Ophthalmol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860298

ABSTRACT

Central serous chorioretinopathy (CSC) is a frequently occurring chorioretinal disease, that is commonly associated with subretinal fluid accumulation in a generally young population. Even though choroidal abnormalities have been found to be of importance, the exact pathogenesis of CSC is still being learned. The origin of pigment epithelial detachments, seen in many CSC patients, is also unclear. Based on the follow-up of a CSC patient for more than 5 years, we hypothesize that intraocular pressure and, by extension, the pressure gradient across the Bruch's membrane, may be one factor in the pathogenesis of pigment epithelial detachments in CSC, which might very well have implications for the occurrence of and possible ways to prevent subretinal fluid in CSC.

8.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928111

ABSTRACT

Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-ß) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-ß. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-ß was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.


Subject(s)
Isothiocyanates , Macular Degeneration , Oxidative Stress , Reactive Oxygen Species , Sulfoxides , Vitamin D , Humans , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Sulfoxides/pharmacology , Vitamin D/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Vascular Endothelial Growth Factor A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Transforming Growth Factor beta/metabolism , Biomarkers/metabolism , Interleukin-8/metabolism
9.
Mol Nutr Food Res ; 68(12): e2400038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824669

ABSTRACT

SCOPE: Xanthophylls, vital for ocular defense against blue light and reactive oxygen species, are prone to oxidative degradation; however, they may be regenerated antioxidant-rich plant phenols. Despite certain in vitro evidence, clinical studies show inconsistent findings and this may be due to varying phenolic reduction potentials. Therefore, the current study aims to investigate the ocular protective effect of various plant phenols combined with xanthophyll. METHODS AND RESULTS: Human retinal pigment epithelial cells (ARPE-19) are subjected to oxidative stress induced by hydrogen peroxide (H2O2) after xanthophyll and phenol pretreatment. Assessments include xanthophyll uptake, total antioxidant capacity, cell viability, intracellular reactive oxygen species levels, apoptosis, phagocytosis, and vascular endothelial growth factor formation. The study finds that while the combination of lutein with phenols does not show significant protective effects compared to lutein-only, zeaxanthin combined with phenols exhibits enhanced protection compared to both the zeaxanthin-only and control groups. CONCLUSION: The research reveals the complex relationship between xanthophylls and phenols, suggesting that the advantageous effects of their combination might vary among different xanthophylls. Caution is necessary when applying molecular theories to ocular health, and this necessitates further research, serving as a basis for proposing clinical trials to evaluate the efficacy of specific xanthophyll and phenol combinations.


Subject(s)
Antioxidants , Apoptosis , Cell Survival , Hydrogen Peroxide , Lutein , Oxidative Stress , Retinal Pigment Epithelium , Xanthophylls , Humans , Oxidative Stress/drug effects , Hydrogen Peroxide/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Cell Line , Cell Survival/drug effects , Apoptosis/drug effects , Xanthophylls/pharmacology , Lutein/pharmacology , Antioxidants/pharmacology , Phenols/pharmacology , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor A/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Zeaxanthins/pharmacology , Phagocytosis/drug effects
10.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892233

ABSTRACT

In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.


Subject(s)
Retina , Retinal Pigment Epithelium , Animals , Dogs , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Nestin/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Biomarkers/metabolism , SOXB1 Transcription Factors/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Immunohistochemistry , Dog Diseases/metabolism , Dog Diseases/pathology
11.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Article in English | MEDLINE | ID: mdl-38766346

ABSTRACT

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

12.
J Biomed Mater Res A ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726752

ABSTRACT

Cell replacement therapy is under development for dry age-related macular degeneration (AMD). A thin membrane resembling the Bruch's membrane is required to form a cell-on-membrane construct with retinal pigment epithelial (RPE) cells. These cells have been differentiated from human embryonic stem cells (hESCs) in vitro. A carrier membrane is required for cell implantation, which is biocompatible for cell growth and has dimensions and physical properties resembling the Bruch's membrane. Here a nanofiber electrospun poly-L-lactic acid (PLLA) membrane is tested for capacity to support cell growth and maturation. The requirements for laminin coating of the membrane are identified here. A porous electrospun nanofibrous PLLA membrane of ∼50 nm fiber diameter was developed as a prototype support for functional RPE cells grown as a monolayer. The need for laminin coating applied to the membrane following treatment with poly-L-ornithine (PLO), was identified in terms of cell growth and survival. Test membranes were compared in terms of hydrophilicity after laminin coating, mechanical properties of surface roughness and Young's modulus, porosity and ability to promote the attachment and proliferation of hESC-RPE cells in culture for up to 8 weeks. Over this time, RPE cell proliferation, morphology, and marker and gene expression, were monitored. The functional capacity of cell monolayers was identified in terms of transepithelial electrical resistance (TEER), phagocytosis of cells, as well as expression of the cytokines, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). PLLA polymer fibers are naturally hydrophobic, so their hydrophilicity was improved by pretreatment with PLO for subsequent coating with the bioactive protein laminin. They were then assessed for amount of laminin adsorbed, contact angle and uniformity of coating using scanning electron microscopy (SEM). Pretreatment with 100% PLO gave the best result over 10% PLO treatment or no treatment prior to laminin adsorption with significantly greater surface stiffness and modulus. By 6 weeks after cell plating, the coated membranes could support a mature RPE monolayer showing a dense apical microvillus structure and pigmented 3D polygonal cell morphology. After 8 weeks, PLO (100%)-Lam coated membranes exhibited the highest cell number, cell proliferation, and RPE barrier function measured as TEER. RPE cells showed the higher levels of specific surface marker and gene expression. Microphthalmia-associated transcription factor expression was highly upregulated indicating maturation of cells. Functionality of cells was indicated by expression of VEGF and PEDF genes as well as phagocytic capacity. In conclusion, electrospun PLLA membranes coated with PLO-Lam have the physical and biological properties to support the distribution and migration of hESC-RPE cells throughout the whole structure. They represent a good membrane candidate for preparation of hESC-RPE cells as a monolayer for implantation into the subretinal space of AMD patients.

13.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38691000

ABSTRACT

Mechanical stimulation as a mimic of drusen formation in the eye increases the expression of angiogenic factors in retinal pigment epithelial (RPE) cells, but the underlying molecular mechanisms remain unclear. We investigated and characterized the effects of mechanical stimulation on the expression of angiogenic factors in RPE cells both in vitro and in a mouse model. Mechanical stimulation increased the expression of vascular endothelial growth factor (VEGF, encoded by VEGFA) and other angiogenesis-related genes in cultured RPE1 cells. The presence of hypoxia-inducible factor 1α (HIF-1α, encoded by HIF1A) was also increased, and both knockdown of HIF-1α and treatment with the HIF-1α inhibitor CAY10585 attenuated the effect of mechanical stimulation on angiogenesis factor gene expression. Signaling by the tyrosine kinase SRC and p38 mitogen-activated protein kinase was involved in HIF-1α activation and consequent angiogenesis-related gene expression induced by mechanical stimulation. Our results suggest that SRC-p38 and HIF-1α signaling are involved in the upregulation of angiogenic factors in RPE cells by mechanical stimulation. Such in vivo suppression of upregulated expression of angiogenesis-related genes by pharmacological inhibitors of HIF-1α suggests a new potential approach to the treatment of age-related macular degeneration.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Retinal Pigment Epithelium , Up-Regulation , p38 Mitogen-Activated Protein Kinases , src-Family Kinases , Retinal Pigment Epithelium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stress, Mechanical , Signal Transduction , Mice , Cell Line , Angiogenesis Inducing Agents/metabolism , Epithelial Cells/metabolism , Humans
14.
Regen Ther ; 27: 419-433, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38694444

ABSTRACT

Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.

15.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727927

ABSTRACT

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Subject(s)
Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
16.
J Hazard Mater ; 473: 134586, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776811

ABSTRACT

The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.


Subject(s)
Light , Mice, Inbred C57BL , Nanoparticles , Oxidative Stress , Polystyrenes , Retina , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Polystyrenes/toxicity , Polystyrenes/chemistry , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Nanoparticles/toxicity , Oxidative Stress/drug effects , Retina/drug effects , Retina/radiation effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Reactive Oxygen Species/metabolism , Mice , Electroretinography , Male
17.
Front Mol Biosci ; 11: 1366020, 2024.
Article in English | MEDLINE | ID: mdl-38633216

ABSTRACT

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

18.
Int J Ophthalmol ; 17(4): 646-652, 2024.
Article in English | MEDLINE | ID: mdl-38638261

ABSTRACT

AIM: To evaluate the effect of bone morphogenetic protein-6 (BMP-6) on transforming growth factor (TGF)-ß2-induced epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE). METHODS: Adult retinal pigment epithelial cell line (ARPE-19) were randomly divided into control, TGF-ß2 (5 µg/L), and BMP-6 small interfering RNA (siRNA) group. The cell morphology was observed by microscopy, and the cell migration ability were detected by Transwell chamber. The EMT-related indexes and BMP-6 protein levels were detected by Western blotting. Furthermore, a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group, TGF-ß2+empty plasmid group, BMP-6 overexpression group, and TGF-ß2+BMP-6 overexpression group. The EMT-related indexes and extracellular regulated protein kinases (ERK) protein levels were detected. RESULTS: Compared with the control group, the migration of RPE cells in the TGF-ß2 group was significantly enhanced. TGF-ß2 increased the protein expression levels of α-smooth muscle actin (α-SMA), fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6 (P<0.05) in RPE. Similarly, the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced. BMP-6 siRNA increased the protein expression levels of α-SMA, fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin (P<0.05). Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-ß2 and prevented TGF-ß2 from affecting EMT-related biomarkers (P<0.05). CONCLUSION: BMP-6 prevents the EMT in RPE cells induced by TGF-ß2, which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.

19.
J Bioenerg Biomembr ; 56(3): 297-309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602631

ABSTRACT

Ferroptosis of the retinal pigment epithelial (RPE) cells leads to retinal neuron injury and even visual loss. Our study aims to investigate the role of the SET domain with lysine methyltransferase 7/9 (SET7/9) in regulating high glucose (HG)-induced ferroptosis in RPE cells. The cell model was established by HG treatment. The levels of SET7/9 and Sirtuin 6 (SIRT6) were inhibited and Runt-related transcription factor 1 (RUNX1) was overexpressed through cell transfection, and then their levels in ARPE-19 cells were detected. Cell viability and apoptosis was detected. The levels of reactive oxygen species, malondialdehyde, glutathione, ferrous ion, glutathione peroxidase 4, and acyl-CoA synthetase long-chain family member 4 were detected. SET7/9 and trimethylation of histone H3 at lysine 4 (H3K4me3) levels in the RUNX1 promoter region and RUNX1 level in the SIRT6 promoter region were measured. The relationship between RUNX1 and SIRT6 was verified. SET7/9 and RUNX1 were highly expressed while SIRT6 was poorly expressed in HG-induced ARPE-19 cells. SET7/9 inhibition increased cell viability and inhibited cell apoptosis and ferroptosis. Mechanistically, SET7/9 increased H3K4me3 on the RUNX1 promoter to promote RUNX1, and RUNX1 repressed SIRT6 expression. Overexpression of RUNX1 or silencing SIRT6 partially reversed the inhibitory effect of SET7/9 silencing on HG-induced ferroptosis. In conclusion, SET7/9 promoted ferroptosis of RPE cells through the SIRT6/RUNX1 pathway.


Subject(s)
Ferroptosis , Glucose , Histone-Lysine N-Methyltransferase , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Glucose/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Epigenesis, Genetic , Histones/metabolism , Methylation , Cell Line , Epithelial Cells/metabolism , Sirtuins/metabolism , Sirtuins/genetics
20.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675608

ABSTRACT

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Subject(s)
Apoptosis , Artemisinins , Cell Survival , Histones , Hydrogen Peroxide , Lysine , Oxidative Stress , Retinal Pigment Epithelium , Humans , Histones/metabolism , Apoptosis/drug effects , Acetylation/drug effects , Hydrogen Peroxide/pharmacology , Artemisinins/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Lysine/metabolism , Cell Survival/drug effects , Oxidative Stress/drug effects , Cell Line , Cytoprotection/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...