Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
Endocr Metab Immune Disord Drug Targets ; : e210224227253, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38988068

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS: A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS: We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION: Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.

2.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928111

ABSTRACT

Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-ß) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-ß. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-ß was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.


Subject(s)
Isothiocyanates , Macular Degeneration , Oxidative Stress , Reactive Oxygen Species , Sulfoxides , Vitamin D , Humans , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Sulfoxides/pharmacology , Vitamin D/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Vascular Endothelial Growth Factor A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Transforming Growth Factor beta/metabolism , Biomarkers/metabolism , Interleukin-8/metabolism
3.
Regen Ther ; 27: 419-433, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38694444

ABSTRACT

Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.

4.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Article in English | MEDLINE | ID: mdl-38766346

ABSTRACT

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

5.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38691000

ABSTRACT

Mechanical stimulation as a mimic of drusen formation in the eye increases the expression of angiogenic factors in retinal pigment epithelial (RPE) cells, but the underlying molecular mechanisms remain unclear. We investigated and characterized the effects of mechanical stimulation on the expression of angiogenic factors in RPE cells both in vitro and in a mouse model. Mechanical stimulation increased the expression of vascular endothelial growth factor (VEGF, encoded by VEGFA) and other angiogenesis-related genes in cultured RPE1 cells. The presence of hypoxia-inducible factor 1α (HIF-1α, encoded by HIF1A) was also increased, and both knockdown of HIF-1α and treatment with the HIF-1α inhibitor CAY10585 attenuated the effect of mechanical stimulation on angiogenesis factor gene expression. Signaling by the tyrosine kinase SRC and p38 mitogen-activated protein kinase was involved in HIF-1α activation and consequent angiogenesis-related gene expression induced by mechanical stimulation. Our results suggest that SRC-p38 and HIF-1α signaling are involved in the upregulation of angiogenic factors in RPE cells by mechanical stimulation. Such in vivo suppression of upregulated expression of angiogenesis-related genes by pharmacological inhibitors of HIF-1α suggests a new potential approach to the treatment of age-related macular degeneration.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Retinal Pigment Epithelium , Up-Regulation , p38 Mitogen-Activated Protein Kinases , src-Family Kinases , Retinal Pigment Epithelium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stress, Mechanical , Signal Transduction , Mice , Cell Line , Angiogenesis Inducing Agents/metabolism , Epithelial Cells/metabolism , Humans
6.
Front Mol Biosci ; 11: 1366020, 2024.
Article in English | MEDLINE | ID: mdl-38633216

ABSTRACT

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

7.
J Bioenerg Biomembr ; 56(3): 297-309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602631

ABSTRACT

Ferroptosis of the retinal pigment epithelial (RPE) cells leads to retinal neuron injury and even visual loss. Our study aims to investigate the role of the SET domain with lysine methyltransferase 7/9 (SET7/9) in regulating high glucose (HG)-induced ferroptosis in RPE cells. The cell model was established by HG treatment. The levels of SET7/9 and Sirtuin 6 (SIRT6) were inhibited and Runt-related transcription factor 1 (RUNX1) was overexpressed through cell transfection, and then their levels in ARPE-19 cells were detected. Cell viability and apoptosis was detected. The levels of reactive oxygen species, malondialdehyde, glutathione, ferrous ion, glutathione peroxidase 4, and acyl-CoA synthetase long-chain family member 4 were detected. SET7/9 and trimethylation of histone H3 at lysine 4 (H3K4me3) levels in the RUNX1 promoter region and RUNX1 level in the SIRT6 promoter region were measured. The relationship between RUNX1 and SIRT6 was verified. SET7/9 and RUNX1 were highly expressed while SIRT6 was poorly expressed in HG-induced ARPE-19 cells. SET7/9 inhibition increased cell viability and inhibited cell apoptosis and ferroptosis. Mechanistically, SET7/9 increased H3K4me3 on the RUNX1 promoter to promote RUNX1, and RUNX1 repressed SIRT6 expression. Overexpression of RUNX1 or silencing SIRT6 partially reversed the inhibitory effect of SET7/9 silencing on HG-induced ferroptosis. In conclusion, SET7/9 promoted ferroptosis of RPE cells through the SIRT6/RUNX1 pathway.


Subject(s)
Ferroptosis , Glucose , Histone-Lysine N-Methyltransferase , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Glucose/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Epigenesis, Genetic , Histones/metabolism , Methylation , Cell Line , Epithelial Cells/metabolism , Sirtuins/metabolism , Sirtuins/genetics
8.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675608

ABSTRACT

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Subject(s)
Apoptosis , Artemisinins , Cell Survival , Histones , Hydrogen Peroxide , Lysine , Oxidative Stress , Retinal Pigment Epithelium , Humans , Histones/metabolism , Apoptosis/drug effects , Acetylation/drug effects , Hydrogen Peroxide/pharmacology , Artemisinins/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Lysine/metabolism , Cell Survival/drug effects , Oxidative Stress/drug effects , Cell Line , Cytoprotection/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism
9.
Int J Biol Macromol ; 268(Pt 2): 131678, 2024 May.
Article in English | MEDLINE | ID: mdl-38657921

ABSTRACT

BACKGROUND: Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS: Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS: This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).


Subject(s)
Hyperglycemia , Protein Stability , Retinal Pigment Epithelium , Signal Transduction , Sumoylation , Humans , Cell Line , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Epithelial Cells/metabolism , Hyperglycemia/metabolism , NF-kappa B/metabolism , Retinal Pigment Epithelium/metabolism , SUMO-1 Protein/metabolism , Glia Maturation Factor
10.
Int J Ophthalmol ; 17(4): 646-652, 2024.
Article in English | MEDLINE | ID: mdl-38638261

ABSTRACT

AIM: To evaluate the effect of bone morphogenetic protein-6 (BMP-6) on transforming growth factor (TGF)-ß2-induced epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE). METHODS: Adult retinal pigment epithelial cell line (ARPE-19) were randomly divided into control, TGF-ß2 (5 µg/L), and BMP-6 small interfering RNA (siRNA) group. The cell morphology was observed by microscopy, and the cell migration ability were detected by Transwell chamber. The EMT-related indexes and BMP-6 protein levels were detected by Western blotting. Furthermore, a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group, TGF-ß2+empty plasmid group, BMP-6 overexpression group, and TGF-ß2+BMP-6 overexpression group. The EMT-related indexes and extracellular regulated protein kinases (ERK) protein levels were detected. RESULTS: Compared with the control group, the migration of RPE cells in the TGF-ß2 group was significantly enhanced. TGF-ß2 increased the protein expression levels of α-smooth muscle actin (α-SMA), fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6 (P<0.05) in RPE. Similarly, the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced. BMP-6 siRNA increased the protein expression levels of α-SMA, fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin (P<0.05). Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-ß2 and prevented TGF-ß2 from affecting EMT-related biomarkers (P<0.05). CONCLUSION: BMP-6 prevents the EMT in RPE cells induced by TGF-ß2, which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.

11.
J Ocul Pharmacol Ther ; 40(4): 246-252, 2024 05.
Article in English | MEDLINE | ID: mdl-38517736

ABSTRACT

Purpose: To investigate the effect of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) on connective tissue growth factor (CTGF) expression in adult retinal pigment epithelial (ARPE)-19 cells. We also studied the inhibitory effect of K-975, a new pan-transcriptional enhanced associate domain (TEAD) inhibitor, and luteolin, a plant-derived flavonoid on CTGF expression. Methods: ARPE-19 cells were transfected with either YAP or TAZ overexpression plasmid or treated with transforming growth factor (TGF)-ß2. The cells were cultured either with or without K-975 or luteolin. The expression of YAP, TAZ, and CTGF was examined using real-time PCR. Results: ARPE-19 cells overexpressing YAP or TAZ exhibited significantly increased CTGF expression. This increase was attenuated by K-975 or luteolin alone. TGF-ß2 treatment significantly raised the expression of not just YAP and TAZ, but also CTGF in ARPE-19 cells. TGF-ß2 treatment-enhanced CTGF expression was considerably lowered by the addition of K-975 or luteolin. Conclusions: Overexpression of YAP or TAZ and treatment with TGF-ß2 led to an increase in the expression of CTGF in ARPE-19 cells. These increases were attenuated by treatment with K-975 and luteolin. These findings suggest that YAP and TAZ may be related to the expression of CTGF in ARPE-19 cells and that K-975 and luteolin can be explored as potential therapeutic agents for preventing CTGF production in vitreoretinal fibrosis.


Subject(s)
Connective Tissue Growth Factor , Luteolin , Retinal Pigment Epithelium , Transcription Factors , Connective Tissue Growth Factor/metabolism , Humans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Luteolin/pharmacology , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Cell Line , Trans-Activators/metabolism , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
12.
J Agric Food Chem ; 72(12): 6347-6359, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38408187

ABSTRACT

Age-related macular degeneration (AMD), a leading cause of visual impairment in the aging population, lacks effective treatment options due to a limited understanding of its pathogenesis. Lutein, with its strong antioxidant properties and ability to mitigate AMD by absorbing ultraviolet (UV) rays, faces challenges related to its stability and bioavailability in functional foods. In this study, we aimed to develop delivery systems using protein-saccharide conjugates to enhance lutein delivery and protect adult retinal pigment epithelial (ARPE-19) cells against sodium iodate (NaIO3)-induced damage. Various saccharides, including mannose, galactose, lactose, maltose, dextran, and maltodextrin, were conjugated to casein via the Maillard reaction for lutein delivery. The resulting lutein-loaded nanoparticles exhibited small size and spherical characteristics and demonstrated improved thermal stability and antioxidant capacity compared to free lutein. Notably, these nanoparticles were found to be nontoxic, as evidenced by reduced levels of cellular reactive oxygen species production (167.50 ± 3.81, 119.57 ± 3.45, 195.15 ± 1.41, 183.96 ± 3.11, 254.21 ± 3.97, 283.56 ± 7.27%) and inhibition of the mitochondrial membrane potential decrease (58.60 ± 0.29, 65.05 ± 2.91, 38.88 ± 1.81, 42.95 ± 1.39, 23.52 ± 1.04, 25.24 ± 0.08%) caused by NaIO3, providing protection against cellular damage and death. Collectively, our findings suggest that lutein-loaded nanoparticles synthesized via the Maillard reaction hold promise for enhanced solubility, oral bioavailability, and biological efficacy in the treatment of AMD.


Subject(s)
Macular Degeneration , Nanoparticles , Humans , Aged , Lutein , Antioxidants/pharmacology , Caseins , Glycosylation , Retinal Pigment Epithelium , Macular Degeneration/pathology , Epithelial Cells
13.
J Transl Med ; 22(1): 38, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195611

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. METHODS: We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. RESULTS: Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS: Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.


Subject(s)
AMP-Activated Protein Kinases , Macular Degeneration , Humans , Caspase 3 , Tunicamycin/pharmacology , Vascular Endothelial Growth Factor A , Macular Degeneration/therapy , Myokines , Epithelial Cells , Retinal Pigments
14.
Biochem Genet ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273154

ABSTRACT

To investigate the effect and potential mechanism of human-derived urine stem cells (hUSCs) in inhibiting retinal aging by using experimental and bioinformatics. Retinal pigment epithelial cells cultured in vitro, which were randomly divided into normal group, aging group and supernatant of hUSCs group. Cell counting kit-8 detection, senescence-related ß-galactosidase, and Annexin V/PI staining were performed to detect cell viability, senescence, and apoptosis. Subsequently, bioinformatics methods were used to explore the underlying mechanisms, in which, targets both hUSCs and aging retina-related targets were obtained from GeneCards. Then, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and protein-protein interaction network were analysis, and the expressional level of hub gene was validated by q-PCR. Supernatant addition of hUSCs promoted markedly cellular proliferation, improved viability and inhibited senescence and apoptosis in vitro. A total of 1476 hUSCs-related targets (Relevance score > 20), 692 retinal disease-related targets, and 732 targets related to disease of aging were selected from GeneCards database, and 289 common targets of hUSCs against aging retina were confirmed through Venn analysis. Enrichment analysis demonstrated that hUSCs might exert its anti-apoptosis efficacy in multiple biological processes, including oxidative stress, inflammation and apoptosis, and core targets were associated with HIF-1, MAPK and PI3K-Akt signal. hUSCs inhibited retinal senescence by regulating multiply targets and signaling pathways, of these, HIF-1, MAPK, and PI3K may be important candidates.

15.
Immunopharmacol Immunotoxicol ; 46(1): 33-39, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37681978

ABSTRACT

OBJECTIVE: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.


Subject(s)
Bibenzyls , Diabetic Retinopathy , Guaiacol/analogs & derivatives , NF-kappa B , Humans , NF-kappa B/metabolism , Glucose/toxicity , Glucose/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Inflammation/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Epithelial Cells , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
16.
Graefes Arch Clin Exp Ophthalmol ; 262(5): 1519-1530, 2024 May.
Article in English | MEDLINE | ID: mdl-38059999

ABSTRACT

PURPOSE: Dysfunctions of retinal pigment epithelium (RPE) attributed to oxidative stress and inflammation are implicated with age-related macular degeneration (AMD). A debate on the curative role of metformin in AMD has been raised, though several recent clinical studies support the lower odds by using metformin. This study aimed to determine whether metformin could exert cytoprotection against RPE oxidative damages and the potential mechanisms. METHODS: A cellular AMD model was established by treating ARPE-19 cells with hydrogen peroxide (H2O2) for 24 h. The reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and levels of pro-inflammatory cytokines were monitored under administrations with H2O2 with/without metformin. The expression and DNA-binding activity of transcription factor erythroid-related factor 2 (Nrf2) were determined by western blot, immunofluorescence, and electrophoretic mobility shift assay. Knockout of Nrf2 was conducted by CRISPR/Cas9 gene deletion system. RESULTS: Metformin pretreatment significantly improved the H2O2-induced low viability of ARPE-19 cells, reduced ROS production, and increased contents of antioxidative molecules. Concurrently, metformin also suppressed levels of pro-inflammatory cytokines caused by H2O2. The metformin-augmented nuclear translocation and DNA-binding activity of Nrf2 were further verified by the increased expression of its downstream targets. Genetic deletion of Nrf2 blocked the cytoprotective role of metformin. CONCLUSION: Metformin possesses antioxidative and anti-inflammatory properties in ARPE-19 cells by activating the Nrf2 signaling. It supports the potential use for the control and prevention of AMD.

17.
Anal Bioanal Chem ; 416(11): 2699-2710, 2024 May.
Article in English | MEDLINE | ID: mdl-37507467

ABSTRACT

Trace elements play crucial roles in cellular biology. Their improper homeostasis may contribute to the progress of eye diseases, exacerbated during ageing. The retinal pigment epithelium (RPE) is progressively deteriorated during age-related neurodegeneration and metal homeostasis may be compromised. In this study, elemental mass spectrometry (MS) was combined with cellular and molecular biology techniques to identify changes in trace elements during the in vitro degeneration of human RPE cells. Cells were collected at 21, 91, and 133 days and processed for RNA sequencing; Ca, Na, P, Mg, and Cu quantification by flow injection analysis and inductively coupled plasma-MS; and protein analysis by immunocytochemistry. Four-month-old RPE cultures showed depigmentation, impaired barrier function, and antioxidant protection, manifesting signs of epithelial-to-mesenchymal transition. Na and P significantly increased in the cytosol of degenerated RPE cells (from 15 ± 20 to 13495 ± 638 ng·µg-1 and from 30.6 ± 9.5 to 116.8 ± 16.8 ng·µg-1, respectively). Mg decreased in both the cytosol and insoluble fraction of cells (from 2.83 ± 0.40 to 1.58 ± 0.56 ng·µg-1 and from 247.57 ± 11.06 to 30 ± 8 ng·g-1, respectively), while P and Cu decreased in the insoluble fraction after 133 days in culture (from 9471 ± 1249 to 4555 ± 985 ng·µg-1 and from 2251 ± 79 to 1054 ± 235 ng·g-1, respectively), along with changes in metal-dependent antioxidant enzymes and Cu transporters. This RPE model reflected metal homeostatic changes, providing additional perspectives on effects of metal regulation during ageing.


Subject(s)
Retinal Pigment Epithelium , Trace Elements , Humans , Infant , Antioxidants/metabolism , Mass Spectrometry/methods , Metals/metabolism , Gene Expression Profiling
18.
Front Biosci (Landmark Ed) ; 28(11): 279, 2023 11 06.
Article in English | MEDLINE | ID: mdl-38062823

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. METHODS: In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. RESULTS: RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. CONCLUSIONS: Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.


Subject(s)
Macular Degeneration , Rubus , Humans , Mice , Animals , Aged , Hydrogen Peroxide/metabolism , Rubus/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Diet, High-Fat/adverse effects , Oxidative Stress , Retina/pathology , Macular Degeneration/etiology , Macular Degeneration/genetics , Inflammation/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism
19.
Cell Struct Funct ; 48(2): 199-210, 2023.
Article in English | MEDLINE | ID: mdl-37899269

ABSTRACT

We have recently demonstrated that a LIM domain protein, cysteine and glycine-rich protein 2 (CSRP2 [CRP2]), plays a vital role in the functional expression of myofibroblasts and cancer-associated fibroblasts. CRP2 binds directly to myocardin-related transcription factors (MRTF [MRTF-A or MRTF-B]) and serum response factor (SRF) to stabilize the MRTF/SRF/CArG-box complex, leading to the expression of smooth muscle cell (SMC) genes such as α-smooth muscle actin (α-SMA) and collagens. These are the marker genes for myofibroblasts. Here, we show that the adhesion of cultured human skin fibroblasts (HSFs) to collagen reduces the myofibroblastic features. HSF adhesion to collagen suppresses the expression of CRP2 and CSRP2-binding protein (CSRP2BP [CRP2BP]) and reduces the expression of SMC genes. Although CRP2BP is known as an epigenetic factor, we find that CRP2BP also acts as an adaptor protein to enhance the function of CRP2 mentioned above. This CRP2BP function does not depend on its histone acetyltransferase activity. We also addressed the molecular mechanism of the reduced myofibroblastic features of HSFs on collagen. HSF adhesion to collagen inhibits the p38MAPK-mediated pathway, and reducing the p38MAPK activity decreases the expression of CRP2 and SMC genes. Thus, the activation of p38MAPK is critical for the myofibroblastic features. We also show evidence that CRP2 plays a role in the myofibroblastic transition of retinal pigment epithelial cells (RPEs). Like HSFs, such phenotypic modulation of RPEs depends on the p38MAPK pathway.Key words: CRP2, p38MAPK, MRTF, myofibroblasts, retinal pigment epithelial cells.


Subject(s)
Fibroblasts , Myofibroblasts , Humans , Myocytes, Smooth Muscle , Collagen , Retinal Pigments , Cells, Cultured
20.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537538

ABSTRACT

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Subject(s)
Receptor, Platelet-Derived Growth Factor beta , Vitreoretinopathy, Proliferative , Humans , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Pigment Epithelium/pathology , Proto-Oncogene Proteins c-akt , Ligands , Reactive Oxygen Species/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/metabolism , Platelet-Derived Growth Factor/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...