ABSTRACT
Molecular evolution analysis typically involves identifying selection pressure and reconstructing evolutionary trends. This process usually requires access to specific data related to a target gene or gene family within a particular group of organisms. While recent advancements in high-throughput sequencing techniques have resulted in the rapid accumulation of extensive genomics and transcriptomics data and the creation of new databases in public repositories, extracting valuable insights from such vast datasets remains a significant challenge for researchers. Here, we elucidated the evolutionary history of THI1, a gene responsible for encoding thiamine thiazole synthase. The thiazole ring is a precursor for vitamin B1 and a crucial cofactor in primary metabolic pathways. A thorough search of complete genomes available within public repositories reveals 702 THI1 homologs of Archaea and Eukarya. Throughout its diversification, the plant lineage has preserved the THI1 gene by incorporating the N-terminus and targeting the chloroplasts. Likewise, evolutionary pressures and lifestyle appear to be associated with retention of TPP-riboswitch sites and consequent dual post-transcriptional regulation of the de novo biosynthesis pathway in basal groups. Multicopy retention of THI1 is not a typical plant pattern, even after successive genome duplications. Examining cis-regulatory sites in plants uncovers two shared motifs across all plant lineages. A data mining of 484 transcriptome datasets supports the THI1 homolog expression under a light/dark cycle response and a tissue-specific pattern. Finally, the work presented brings a new look at public repositories as an opportunity to explore evolutionary trends to THI1.
ABSTRACT
The methylotrophic yeast Komagataella phaffii is one of the most important microbial platforms to produce recombinant proteins. Despite its importance in the context of industrial biotechnology, the use of synthetic biology approaches in K. phaffii is hampered by the fact that few genetic tools are available for precise control of gene expression in this system. In this work, we used an RNA aptamer activated by tetracycline to modulate protein production at the translational level. Using lacZ as gene reporter, we have demonstrated significant reduction of the heterologous protein upon addition of tetracycline. Furthermore, this genetic control device was applied for the control of Ku70p. This protein is involved in non-homologous recombination and the control of its production paves the way for the development of strains exhibiting higher rates of homologous recombination.
ABSTRACT
The spread of antibiotic-resistant bacteria represents a substantial health threat. Current antibiotics act on a few metabolic pathways, facilitating resistance. Consequently, novel regulatory inhibition mechanisms are necessary. Riboswitches represent promising targets for antibacterial drugs. Purine riboswitches are interesting, since they play essential roles in the genetic regulation of bacterial metabolism. Among these, class I (2'-dG-I) and class II (2'-dG-II) are two different 2'-deoxyguanosine (2'-dG) riboswitches involved in the control of deoxyguanosine metabolism. However, high affinity for nucleosides involves local or distal modifications around the ligand-binding pocket, depending on the class. Therefore, it is crucial to understand these riboswitches' recognition mechanisms as antibiotic targets. In this work, we used a combination of computational biophysics approaches to investigate the structure, dynamics, and energy landscape of both 2'-dG classes bound to the nucleoside ligands, 2'-deoxyguanosine, and riboguanosine. Our results suggest that the stability and increased interactions in the three-way junction of 2'-dG riboswitches were associated with a higher nucleoside ligand affinity. Also, structural changes in the 2'-dG-II aptamers enable enhanced intramolecular communication. Overall, the 2'-dG-II riboswitch might be a promising drug design target due to its ability to recognize both cognate and noncognate ligands.
Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/genetics , Bacteria/metabolism , Deoxyguanosine/genetics , Riboswitch/genetics , Aptamers, Nucleotide/genetics , Ligands , Models, Molecular , Nucleic Acid Conformation , Purines/metabolismABSTRACT
Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers. On the other hand, the increase of fungal infections and antifungal resistance raises the need for new antifungal therapies. In this work, we used computational approaches to build three-dimensional models for the three TPP riboswitches identified in Aspergillus oryzae, in which we studied their structure, dynamics, and binding free energy change (ΔGbind) with TPP. Interaction patterns between the TPP and the surrounding nucleotides were conserved among the three models, evidencing high structural conservation. Furthermore, we show that the TPP riboswitch from the A. oryzae NMT1 gene behaves similarly to the E. coli thiA gene concerning the ΔGbind. In contrast, mutations in the fungal TPP riboswitches from THI4 and the nucleoside transporter genes led to structural differences, affecting the binding-site volume, hydrogen bond occupancy, and ΔGbind. Besides, the number of water molecules surrounding TPP influenced the ΔGbind considerably. Notably, our ΔGbind estimation agreed with previous experimental data, reinforcing the relationship between sequence conservation and TPP interaction.
Subject(s)
Aspergillus oryzae/genetics , Computational Biology , Gene Expression Regulation, Fungal , Models, Biological , Riboswitch , Escherichia coli/genetics , Hydrogen Bonding , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Bacterial , Structure-Activity Relationship , ThermodynamicsABSTRACT
Our growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA tool to target bacterial riboswitches and activate gene expression (rtRNA). The synthetic rtRNA is suitable for regulation of gene expression both in cell-free and in cellular systems. It targets riboswitches to promote the antitermination folding regardless the cognate metabolite concentration. Therefore, it prevents transcription termination increasing gene expression up to 103-fold. We successfully used small RNA arrays for multiplex targeting of riboswitches. Finally, we used the synthetic rtRNAs to engineer an improved riboflavin producer strain. The easiness to design and construct, and the fact that the rtRNA works as a single genome copy, make it an attractive tool for engineering industrial metabolite-producing strains.
Subject(s)
Riboswitch , Bacteria , Metabolic Engineering , RNA , Riboswitch/genetics , Transcription, GeneticABSTRACT
Activation of the two-component system formed by CckA, ChpT, and CtrA (kinase, phosphotransferase, and response regulator, respectively) in Rhodobacter sphaeroides does not occur under the growth conditions commonly used in the laboratory. However, it is possible to isolate a gain-of-function mutant in CckA that turns the system on. Using massive parallel transcriptome sequencing (RNA-seq), we identified 321 genes that are differentially regulated by CtrA. From these genes, 239 were positively controlled and 82 were negatively regulated. Genes encoding the Fla2 polar flagella and gas vesicle proteins are strongly activated by CtrA. Genes involved in stress responses as well as several transcriptional factors are also positively controlled, whereas the photosynthetic and CO2 fixation genes are repressed. Potential CtrA-binding sites were bioinformatically identified, leading to the proposal that at least 81 genes comprise the direct regulon. Based on our results, we ponder that the transcriptional response orchestrated by CtrA enables a lifestyle in which R. sphaeroides will effectively populate the surface layer of a water body enabled by gas vesicles and will remain responsive to chemotactic stimuli using the chemosensoring system that controls the Fla2 flagellum. Simultaneously, fine-tuning of photosynthesis and stress responses will reduce the damage caused by heat and high light intensity in this water stratum. In summary, in this bacterium CtrA has evolved to control physiological responses that allow its adaptation to a particular lifestyle instead of controlling the cell cycle as occurs in other species.IMPORTANCE Cell motility in Alphaproteobacteria is frequently controlled by the CckA, ChpT, and CtrA two-component system. Under the growth conditions commonly used in the laboratory, ctrA is transcriptionally inactive in Rhodobacter sphaeroides, and motility depends on the Fla1 flagellar system that was acquired by a horizontal transfer event. Likely, the incorporation of this flagellar system released CtrA from the strong selective pressure of being the main motility regulator, allowing this two-component system to specialize and respond to some specific conditions. Identifying the genes that are directly regulated by CtrA could help us understand the conditions in which the products of this regulon are required. Massive parallel transcriptome sequencing (RNA-seq) revealed that CtrA orchestrates an adaptive response that contributes to the colonization of a particular environmental niche.
Subject(s)
Adaptation, Biological , Gene Expression Regulation, Bacterial , Rhodobacter sphaeroides/physiology , Transcription Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , Conserved Sequence , Gene Expression Profiling , Photosynthesis , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Repetitive Sequences, Nucleic Acid , Transcription Factors/metabolismABSTRACT
Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.
Subject(s)
Bacteria/genetics , Bacteria/metabolism , Metabolic Networks and Pathways , Riboflavin/metabolismABSTRACT
RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications.