Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172152, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575012

ABSTRACT

Mercury (Hg) is a ubiquitous and pervasive environmental contaminant with detrimental effects on wildlife, which originates from both natural and anthropogenic sources. Its distribution within ecosystems is influenced by various biogeochemical processes, making it crucial to elucidate the factors driving this variability. To explore these factors, we employed an innovative method to use northern gannets (Morus bassanus) as biological samplers of regurgitated fish in the Gulf of St. Lawrence. We assessed fish total Hg (THg) concentrations in relation to their geographical catch location as well as to pertinent biotic and anthropogenic factors. In small fish species, trophic position, calculated from compound-specific stable nitrogen isotopes in amino acids, emerged as the most influential predictor of THg concentrations. For large fish species, THg concentrations were best explained by δ13C, indicating higher concentrations in inshore habitats. No anthropogenic factors, such as pollution, shipping traffic, or coastal development, were significantly related to THg concentrations in fish. Moreover, previously published THg data in mussels sampled nearby were positively linked with THg concentrations in gannet prey, suggesting consistent mercury distribution across trophic levels in the Gulf of St. Lawrence. Our findings point to habitat-dependent variability in THg concentrations across multiple trophic levels. Our study could have many potential uses in the future, including the identification of vulnerability hotspots for fish populations and their predators, or assessing risk factors for seabirds themselves by using biologically relevant prey.


Subject(s)
Environmental Monitoring , Fishes , Mercury , Water Pollutants, Chemical , Mercury/analysis , Animals , Environmental Monitoring/methods , Fishes/metabolism , Water Pollutants, Chemical/analysis , Quebec , Food Chain , Ecosystem
2.
Animals (Basel) ; 14(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672350

ABSTRACT

This study was conducted to elucidate the impact on the growth and feed availability of rockfish (Sebastes schlegeli) from including jack mackerel meal (JMM) in feeds which otherwise substitute 20% fish meal (FM) with chicken by-product meal (CBM). Six formulated feeds were designed to be isonitrogenous and isolipidic. Specifically, 55% FM was included in the control (Con) diet. In the Con diet, 20% FM was substituted by CBM, and then the graded levels (0, 20, 40, 60, and 80%) of JMM were included instead of FM, named as the C20J0, C20J20, C20J40, C20J60, and C20J80 diets, respectively. Five hundred and forty juvenile rockfish (initial weight of 11.2 g) were assigned to 18 tanks. All experimental feeds were fed to triplicate groups of rockfish twice daily for 8 weeks. Superior weight gain, specific growth rate (SGR), and feed intake of rockfish fed the C20J60 and C20J80 diets compared to rockfish fed the Con and C20J0 diets were observed. However, the feed utilization, biological indices, proximate composition, amino acid profiles, and blood chemistry of the rockfish were not affected by the dietary treatments. The slightly but not significantly higher economic profit index and growth performance were obtained in the C20J60 diet compared to the C20J80 diet. In conclusion, the C20J60 diet was the most recommendable treatment based on the improvement in growth performance (weight gain and SGR) and feed intake of rockfish, and the highest economic return to farmers.

3.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38572957

ABSTRACT

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Subject(s)
Ovary , Spermatozoa , Animals , Male , Female , Spermatozoa/metabolism , Ovary/metabolism , Fertilization , Viviparity, Nonmammalian , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Fishes/metabolism , Cellular Microenvironment , Multiomics
4.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38477640

ABSTRACT

Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.


Subject(s)
Spermatogonia , Testis , Adult , Male , Humans , Leydig Cells , Sertoli Cells , Spermatogenesis
5.
Mar Life Sci Technol ; 6(1): 15-30, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433961

ABSTRACT

Prostaglandins (PGs) are profound hormones in teleost sexual behavior, especially in mating. PGs act as pheromones that affect the olfactory sensory neurons of males, inducing the initiation of a series of mating behaviors. However, the molecular mechanism by which PGs trigger mating behavior in ovoviviparous teleosts is still unclear. In the present study, we employed the ovoviviparous black rockfish (Sebastes schlegelii), an economically important marine species whose reproductive production is limited by incomplete fertilization, as a model species. The results showed that when the dose of PGE2 was higher than 10 nmol/L, a significant (P < 0.05) increase in mating behaviors was observed. Dual-fluorescence in situ hybridization indicated that PGE2 could fire specific neurons in different brain regions and receptor cells in the olfactory sac. After combining with specific neurons in the central nervous system (CNS), a series of genes related to reproduction are activated. The intracerebroventricular administration of PGE2 significantly increased lhb levels (P < 0.05) in both sexes. Moreover, steroidogenesis in gonads was also affected, inducing an increase (P < 0.05) in E2 levels in males and T levels in females. PGE2 levels were also increased significantly (P < 0.05) in both sexes. The present study revealed that PGE2 can activate mating behavior in black rockfish in both hormone and pheromone pathways, leading to variations in sex steroid levels and activation of reproductive behaviors. Our results provide not only novel insight into the onset of mating behaviors in ovoviviparous teleosts but also solutions for the incomplete fertilization caused by natural mating in cage aquaculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00214-w.

6.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216988

ABSTRACT

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Subject(s)
Fish Diseases , Flounder , Perciformes , Polyether Polyketides , Pyrans , Humans , Animals , Fish Diseases/drug therapy , Fish Diseases/parasitology , Fishes , Muscles/parasitology , Administration, Oral
7.
J Environ Radioact ; 273: 107386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286077

ABSTRACT

Following the accident at the Fukushima Dai-ichi Nuclear Power Station, radiocaesium concentrations were specifically elevated in rockfish species compared to other fish species. To clarify the likely reasons, a caesium metabolic rate in the Japanese rockfish Sebastes cheni was derived by an aquarium experiment of live fish collected from the area off Fukushima. Stable caesium and 137Cs concentration in prey organisms, stomach contents and muscle of rockfish were measured and the bioavailable fraction in prey organisms was evaluated. Using derived transfer parameters, 137Cs radioactivity levels in S. cheni and prey organisms were simulated by a model, and verified by the measured radioactivity concentrations of biota in coastal waters south of the Fukushima Dai-ichi Nuclear Power Station. As a result, slow caesium metabolism in S. cheni was confirmed with the biological half-life (Tb1/2) of 190 d. The determining factor for the initial 137Cs radioactivity levels in S. cheni, was the maximum radioactivity levels in surrounding seawater which was constrained by the sedentary nature of rockfish. Controlling factors of depuration rate of 137Cs levels in S. cheni were slow caesium metabolism, enhanced 137Cs radioactivity level of prey organisms, and survival of older contaminated individuals due to a long life-span. During the study period 2017-2021, 137Cs radioactivity concentrations in seawater decreased close to the level measured before 2010, whereas those in prey organisms and rockfish in southern Fukushima waters were still above the levels that existed before 2010. An additional source for enhancing 137Cs radioactivity in rockfish and biota of the food chain was indicated by the greater 137Cs/133Cs atom ratios in rockfish compared to those in the surrounding seawater, however it was considered to be radiologically insignificant in relation to seafood safety limits.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Animals , Water Pollutants, Radioactive/analysis , Fishes/metabolism , Cesium Radioisotopes/analysis , Japan
8.
Biol Reprod ; 110(1): 140-153, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37812450

ABSTRACT

Fish have evolved various reproductive strategies including oviparity, viviparity, and ovoviviparity, which undoubtedly affect the survival of the whole species continuity. As the final step in reproduction, parturition in viviparous vertebrate and ovulation in oviparous teleost seem to share a similar mechanism, when prostaglandins (PGs) act as the trigger to launch the whole process. In the present study, ovoviviparous teleost black rockfish (Sebastes schlegelii) is employed as the research object. Intraperitoneal injection showed that PGE2 (500 µg/kg) could activate the delivery reactions in perinatal black rockfish. RNA-seq data of ovary in perinatal period revealed transcriptional change in cell junction, inflammation, and apoptosis, which is related to mammal parturition and teleost ovulation. Further results proved the positive correlation between ptger EP2 and previous mentioned pathways. Subsequent experiment proved that PGE2 was able to induce the ovulation and spawning in unfertilized individuals, which had a bilayer follicular structure compared to monolayer follicular in perinatal period black rockfish. Both unfertilized and perinatal ovary matrix could response to PGE2 stimulation. In conclusion, the function of PGE2 in activating both parturition and ovulation in a relatively different pathways conserved with viviparity or oviparity provided novel evidence of the evolutionary status of ovoviviparous vertebrates.


Subject(s)
Ovoviviparity , Perciformes , Animals , Female , Pregnancy , Ovoviviparity/genetics , Dinoprostone , Amino Acid Sequence , Ovulation , Parturition , Phylogeny , Mammals
9.
Animals (Basel) ; 13(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003203

ABSTRACT

This experiment was performed to assess the substitution impact of fish meal (FM) with tuna by-product meal (TBM) in feeds on growth and feed availability of the early stage of juvenile rockfish (S. schlegeli). Six experimental feeds were prepared to be isonitrogenous and isolipidic. Fifty-five percent of FM was contained in the control (Con) diet. In the Con diet, 20, 40, 60, 80, and 100% FM were replaced by TBM, named the TBM20, TBM40, TBM60, TBM80, and TBM100 diets, respectively. A total of 540 early-stage juvenile rockfish averaging 2.4 g was divided into 18 tanks and hand-fed to satiation for 56 days. Weight gain and feed consumption of rockfish fed the TBM20 and TBM40 diets were comparable to rockfish fed the Con diet. The specific growth rate (SGR) of rockfish fed the Con diet was comparable to rockfish fed the TBM20, TBM40, and TBM60 diets. Feed efficiency, biometric indices, hematological parameters, proximate composition, and amino acid profiles of rockfish were not impacted by dietary treatments. The economic profit index (EPI) of the Con, TBM20, and TBM40 diets were higher than that of all other diets. FM up to 40% could be substitutable with TBM in the diets of rockfish without deteriorating weight gain and feed consumption, but producing the highest EPI.

10.
Genes (Basel) ; 14(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37761919

ABSTRACT

Heat shock protein 70 kDa (Hsp70) is a highly conserved heat stress protein that is important in biotic processes and responses to abiotic stress. Hsp70 genes may be important in Sebastiscus marmoratus, for it is a kind of nearshore reef fish, and habitat temperature change is more drastic during development. However, genome-wide identification and expression analysis in the Hsp70 gene family of S. marmoratus are still lacking. Here, a total of 15 Hsp70 genes in the genome of S. marmoratus are identified, and their expression patterns were investigated using transcriptomic data from thermal stress experiments. The expansion and gene duplication events of Hsp70 genes from the Hspa4, Hspa8, and Hspa12a subfamilies in S. marmoratus are revealed by phylogenetic analysis. qRT-PCR expression patterns demonstrated that seven Hsp70 genes were significantly up-regulated and none were significantly down-regulated after heat treatment. Only the hsp70 gene was significantly up-regulated after cold treatment. The selection test further showed a purifying selection on the duplicated gene pairs, suggesting that these genes underwent subfunctionalization. Our results add novel insight to aquaculture and biological research on S. marmoratus, providing important information on how Hsp70 genes are regulated in Scorpaeniformes under thermal stress.

11.
Mol Ecol ; 32(18): 5013-5027, 2023 09.
Article in English | MEDLINE | ID: mdl-37548650

ABSTRACT

Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.


Subject(s)
Bass , Perciformes , Animals , Male , Perciformes/genetics , Sex Chromosomes/genetics , Y Chromosome , Genomics/methods , Bass/genetics , Evolution, Molecular
12.
Biol Reprod ; 109(5): 693-704, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37593921

ABSTRACT

Along with the evolution process, the reproductive strategies evolved including oviparity, viviparity and ovoviviparity, to fit the residential environment maximize the survival rate of the off spring. In mammals, the key to the initiation of parturition is the inflammatory response at the maternal-fetal interface. As a pro-inflammatory cytokine, interleukin 1 beta (IL1ß) plays an important role in the process of human parturition. While less is known about IL1ß1 in teleost parturition, identification of the functions of IL1ß1 in inducing the parturition, black rockfish, an ovoviviparity teleost, which provides over 60% nutrition supply for over 50 000 embryos though a placenta like structure during pregnant, was employed as the research model. In the present study, based on the gene cloning, we detected the expression pattern of both Il1b1 and its receptor perinatal period, as well as the localization to the ovary by in situ hybridization. The different expression genes in transcriptomic data of perinatal primary ovarian cells treated with the recombinant IL1ß1 (rIL1ß1) obtained by prokaryotic expression system were analyzed. Differentially expressed genes, functional enrichment and pathway analysis mainly included immune response, signal transduction and cell death. In summary, our research provides novel insights into the potential role of IL1ß1 in the parturition of ovoviviparity teleost.


Subject(s)
Ovoviviparity , Perciformes , Pregnancy , Animals , Female , Humans , Ovoviviparity/physiology , Cytokines/genetics , Amino Acid Sequence , Phylogeny , Perciformes/genetics , Parturition , Fish Proteins/genetics , Fish Proteins/chemistry , Mammals
13.
Theriogenology ; 206: 189-196, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37229958

ABSTRACT

Ovarian fluid is essential for successful fertilization by maintaining the viability, motility, and velocity of sperm. The organic compounds and inorganic ions in ovarian fluid significantly influence spermatozoa's motility, velocity, and longevity. However, the effect of ovarian fluid on sperm performance is limited in teleost fish. In this study, the effect of ovarian fluid on sperm performance and its components in external fertilization species (Scophthalmus maximus, turbot) and internal fertilization species (Sebastes schlegelii, black rockfish) was investigated using computer-assisted sperm analysis, high-performance liquid chromatography, and metabolome analysis. The ovarian fluid had a distinct and species-specific effect on both species. In the black rockfish, the ovarian fluid from turbot significantly increased sperm motility (74.07% ± 4.09%), as well as VCL (45 ± 1.67 µm/s), VAP (40.17 ± 1.6 µm/s), and VSL (36.67 ± 1.86 µm/s), and longevity (352 ± 11.31 min) (P < 0.05). In the turbot, only the longevity (71.33 ± 5.69 min) and fertilization rate (65.27% ± 11.59%) showed significantly improvement (P < 0.05). The ovarian fluid was rich in organic compounds, suggesting enrichment in the glycolysis/gluconeogenesis pathways. The results suggest that glycometabolism plays a crucial role in improving sperm performance in teleost with internal fertilization. Thus, incorporating ovarian fluid into the sperm activation medium can enhance artificial fertilization in fish breeding.


Subject(s)
Flatfishes , Perciformes , Male , Animals , Fertilization/physiology , Semen , Sperm Motility/physiology , Spermatozoa/physiology
14.
Article in English | MEDLINE | ID: mdl-37229966

ABSTRACT

Hypoxia has become a common problem for aquatic organisms due to the interaction of global climate change and human activity. Black rockfish inhabits rocky reefs in waters of Japan, Korea and China, whereas the limited hypoxia tolerance leads to mass mortality and great economic loss. In this study, high-throughput RNA-seq for transcriptomic analysis was used to investigate the hepatic response in black rockfish under hypoxia (critical oxygen tension, Pcrit; loss of equilibrium, LOE) and reoxygenation (recover normal dissolved oxygen 24 h, R24) to explore the mechanisms underlying hypoxia tolerance and adaptation. A total of 573,040,410 clean reads and 299 differentially expressed genes (DEGs) in total were obtained during hypoxia and reoxygenation. GO annotation and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the DEGs are mainly enriched in the biochemical metabolic pathways and HIF-1 signaling pathways. Transcriptomic analysis also identified 18 DEGs associated with HIF-1 signaling pathway (hif1α, tf, epo, hmox, gult1, mknk2, ldha, pfkfb3, hkdc, aldoa) and biological process (hif2α, apoeb, bcl6, mr1, errfi1, slc38a4, igfbp1a, ap4m1) as further validated by quantitative real-time PCR. Moreover, hif1α was positively or negatively correlated with glucose (ldha, pfkfb3, hkdc, aldoa) and lipid (apoeb) metabolism-related genes. The mRNA level of hif1α was significantly up-regulated under acute hypoxia stress and obtained the higher values than hif2α. Meanwhile, hif1α recognized the hypoxia response element located in the promoter of ldha and directly bound to the promoter to transactivate ldha expression. These results indicated that black rockfish may mainly utilize glycolysis to maintain homeostasis, and hif1α facilities hypoxia tolerance by modulating ldha expression.


Subject(s)
Perciformes , Transcriptome , Humans , Animals , Hypoxia/genetics , Perciformes/genetics , Perciformes/metabolism , Real-Time Polymerase Chain Reaction , China
15.
Article in English | MEDLINE | ID: mdl-37028701

ABSTRACT

Secretoneurin (SN), a conserved peptide derived from secretogranin-2 (scg2), also known as secretogranin II or chromogranin C, plays an important role in regulating gonadotropin in the pituitary, which affects the reproductive system. This study aimed to clarify the mode of action of scg2 in regulating gonad development and maturation and the expression of mating behavior-related genes. Two scg2 cDNAs were cloned from the ovoviviparity teleost black rockfish (Sebastes schlegelii). In situ hybridization detected positive scg2 mRNA signals in the telencephalon and hypothalamus, where sgnrh and kisspeptin neurons were reported to be located and potentially regulated by scg2. In vivo, intracerebral ventricular injections of synthetic black rockfish SNa affected brain cgnrh, sgnrh, kisspeptin1, pituitary lh and fsh and gonad steroidogenesis-related gene expression levels with sex dimorphism. In vitro, a similar effect was found in primary cultured brain and pituitary cells. Thus, SN could contribute to the regulation of gonadal development, as well as reproductive behaviors, including mating and parturition.


Subject(s)
Perciformes , Secretogranin II , Animals , Secretogranin II/genetics , Secretogranin II/metabolism , Ovoviviparity/physiology , Reproduction/physiology , Perciformes/metabolism
16.
Aquat Toxicol ; 258: 106502, 2023 May.
Article in English | MEDLINE | ID: mdl-36965427

ABSTRACT

Dissolved oxygen concentrations both in the open ocean and coast have been declining due to the interaction of global climate change and human activity. Fish have evolved different adaptative strategies to cope with possibly damage induced by hypoxic environments. Black rockfish as important economic fish widely reared in the offshore sea cage, whereas related physiological response subject to hypoxia stress remained unclear. In this study, hepatic anti-oxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]), aminotransferase (AST) and alanine aminotransferase (ALT) activities, lipid peroxidation (LPO), malondialdehyde (MDA) and glutathione (GSH) content, immunological parameters and the expression of apoptosis (bax, bcl2, p53, caspase3, xiap) and immune-related genes (c3, il-1ß, ccl25, saa, hap, isg15) of black rockfish were determined during hypoxia and reoxygenation to illustrate the underlying defense response mechanisms. Results showed that hypoxia stress remarkably increased hepatic LPO and MDA content, AST and ALT activity and proportion of pyknotic nucleus. Hepatic SOD, CAT and GSH-Px activity manifested similar results, whereas GSH levels significantly decreased under hypoxia stress. The apoptosis rate of hepatocyte increased during hypoxia stress and reoxygenation. Meanwhile, p53, caspase3, bax and xiap mRNAs and bax/bcl2 rations were significantly up-regulated under hypoxia stress. However, bcl2 mRNA was significantly down-regulated. Interestingly, hypoxia stress significantly increased NBT-positive cell percent, phagocytic index, respiratory burst and ACH50 activity, and lysozyme activity. The mRNA levels of c3, ilß, ccl25, saa, hap and isg15 were significantly up-regulated in the liver, spleen and head-kidney under hypoxia stress. The above parameters recovered to normal status after reoxygenation for 24 h Thus, hypoxia stress impairs hepatic antioxidant capacity, induces oxidative damage and apoptosis via the xiap-p53-bax-bcl2 and the caspase-dependent pathways, but enhances host immunity by regulating nonspecific immune indices and related genes expression to maintain homeostasis in black rockfish. These findings will help fully understand the hypoxia tolerance mechanisms of black rockfish and provide more data for offshore open ocean farming.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Antioxidants/metabolism , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Water Pollutants, Chemical/toxicity , Liver/metabolism , Apoptosis , Glutathione/metabolism , Superoxide Dismutase/metabolism , Perciformes/metabolism , Gene Expression , RNA, Messenger/metabolism , Immunity
17.
Article in English | MEDLINE | ID: mdl-36796184

ABSTRACT

Whether in aquaculture or in nature, starvation stress limits the growth of fish. The purpose of the study was to clarify the detailed molecular mechanisms underlying starvation stress in Korean rockfish (Sebastes schlegelii) through liver transcriptome and metabolome analysis. Transcriptome results showed that liver genes associated with cell cycle and fatty acid synthesis were down-regulated, whereas those related to fatty acid decomposition were up-regulated in the experimental group (EG; starved for 72 days) compared to the control group (CG; feeding). Metabolomic results showed that there were significant differences in the levels of metabolites related to nucleotide metabolism and energy metabolism, such as purine metabolism, histidine metabolism and oxidative phosphorylation. Five fatty acids (C22:6n-3; C22:5n-3; C20:5n-3; C20:4n-3; C18:3n-6) were selected as possible biomarkers of starvation stress from the differential metabolites of metabolome. Subsequently, correlation between these differential genes of lipid metabolism and cell cycle and differential metabolites were analyzed, and observed that these five fatty acids were significantly correlated with the differential genes. These results provide new clues for understanding the role of fatty acid metabolism and cell cycle in fish under starvation stress. It also provides a reference for promoting the biomarker identification of starvation stress and stress tolerance breeding research.


Subject(s)
Perciformes , Transcriptome , Animals , Perciformes/genetics , Perciformes/metabolism , Metabolome , Fatty Acids/metabolism , Fishes/genetics , Fishes/metabolism , Republic of Korea
18.
PeerJ ; 11: e14564, 2023.
Article in English | MEDLINE | ID: mdl-36815986

ABSTRACT

Measuring the spatial distribution of microparticles which include synthetic, semi-synthetic, and anthropogenic particles is critical to understanding their potential negative impacts on species. This is particularly important in the context of microplastics, which are a form of microparticle that are prevalent in the marine environment. To facilitate a better understanding of microparticle occurrence, including microplastics, we sampled subadult and young juvenile Black Rockfish (Sebastes melanops) at multiple Oregon coast sites, and their gastrointestinal tracts were analyzed to identify ingested microparticles. Of the subadult rockfish, one or more microparticles were found in the GI tract of 93.1% of the fish and were present in fish from Newport, and near four of five marine reserves. In the juveniles, 92% of the fish had ingested one or more microparticles from the area of Cape Foulweather, a comparison area, and Otter Rock, a marine reserve. The subadults had an average of 7.31 (average background = 5) microparticles detected, while the juveniles had 4.21 (average background = 1.8). In both the subadult and juvenile fish, approximately 12% of the microparticles were identified as synthetic using micro-Fourier Infrared Spectroscopy (micro-FTIR). Fibers were the most prevalent morphology identified, and verified microparticle contamination was a complex mixture of synthetic (∼12% for subadults and juveniles), anthropogenic (∼87% for subadults and 85.5% for juveniles), and natural (e.g., fur) materials (∼0.7% for subadults and ∼2.4% for juveniles). Similarities in exposure types (particle morphology, particle number) across life stages, coupled with statistical differences in exposure levels at several locations for subadult fish, suggest the potential influence of nearshore oceanographic patterns on microparticle distribution. A deeper understanding of the impact microplastics have on an important fishery such as those for S. melanops, will contribute to our ability to accurately assess risk to both wildlife and humans.


Subject(s)
Bass , Perciformes , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics , Oregon , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
19.
Article in English | MEDLINE | ID: mdl-36525779

ABSTRACT

Black rockfish (Sebastes schlegelii) is a viviparous teleost fish whose spermatozoa were transferred into the female ovary cavity and stored for up to five months and then fertilized with the matured eggs. There is no clarity about the molecular characteristics of ovarian follicles during female sperm storage in Sebastes schlegelii. In this study, histological observation, transcriptomic analysis and hormone level detection were performed in ovaries at stages of pre-mating (PRM), post-mating (POM) and pre-fertilization (PRF). Histological observation displayed that oocytes developed from the primary growth (PG) stage to the mature stage during the three stages. Furthermore, somatic cells around the oocyte were proliferated and spermatozoa were found near the layer of epithelial cells. Transcriptomic analysis showed that there were 437 and 747 differentially expressed genes (DEGs) in ovarian comparison of PRM-vs-POM and POM-vs-PRF, respectively. GO enrichment and KEGG analysis revealed that lots of DEGs from PRM-vs-POM were linked to immune-related pathways, such as antigen processing and presentation, immune response, and complement and coagulation cascade. Meanwhile, seven DEGs associated with immune response were differentially expressed after spermatozoa treatment in ovarian tissue in vitro. While the DEGs from POM-vs-PRF were mostly enriched in the pathways related to homeostasis maintenance and cellular junction and metabolism. In addition, we found increased estrogen (E2) and 11-ketotestosterone (11-KT) level and decreased testosterone level in ovarian follicles during the sperm storage period by ELISA, suggesting that sex hormones are involved in the dynamic change of ovarian follicles. In total, this study could provide new hints for understanding the immune adaption and developmental signatures of ovarian follicles post copulation in black rockfish and other viviparous fish.


Subject(s)
Ovary , Perciformes , Male , Female , Animals , Ovary/metabolism , Transcriptome , Semen , Perciformes/genetics , Fishes/genetics , Spermatozoa , Immunity
20.
Gene ; 854: 147093, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36476662

ABSTRACT

Black rockfish (Sebastes schlegelii) and its relatives are viviparous marine fish. Males produce urinary proteins during the copulation season; however, the identity of these proteins was unknown. In this study, we focused on high-molecular-weight urinary proteins (HMWups) in male black rockfish. The HMWups were identified by liquid chromatography and tandem mass spectrometry (LC-MS/MS) of urine. In silico analyses of RNA-seq data predicted the tissue distribution of candidate HMWup transcripts and their gene structures. Candidate cDNAs were cloned and a recombinant protein of a major candidate was prepared. Western blotting of urine using an antiserum against the recombinant protein was performed to reconfirm the LC-MS/MS results. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were employed to validate the prediction by RNA-seq and identify the cells producing HMWups, respectively. LC-MS/MS, in conjunction with Western blotting and cDNA cloning, identified the HMWups as lipocalin-type prostaglandin D2 synthase (l-PGDS) homologs. RNA-seq analyses and qRT-PCR revealed that the l-PGDS homolog transcripts were dominantly expressed in the testis and male kidney; Sertoli cells and epithelial cells in the renal tubules were immunoreactive. These results indicated that major protein components in the urine of male black rockfish are l-PGDS homologs, potentially produced by the renal tubules in the kidney. Male rockfish (genus Sebastes) are thought to release unknown pheromone substances during mating behavior. The knowledge and tools obtained in this study empower research into the role(s) of HMWups in pheromone systems underlying rockfish reproduction. No protein-type teleost pheromone has heretofore been discovered.


Subject(s)
Bass , Perciformes , Animals , Male , Chromatography, Liquid , Tandem Mass Spectrometry , Perciformes/genetics , Recombinant Proteins , Lipocalins/genetics , Prostaglandins
SELECTION OF CITATIONS
SEARCH DETAIL
...