Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 13(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273861

ABSTRACT

Coarse roots and the root plate play an important role in tree resistance to uprooting. In this study, a qualitative mechanistic model was developed to analyze coniferous tree resistance to uprooting in relation to tree morphological characteristics. The sizes of the crown, stem, and root plate of twenty sample spruces and twenty sample Korean pines were individually measured for this purpose. Using Ground Penetrating Radar (GPR), the coarse root distribution and root plate size were detected. In the qualitative mechanistic model, a larger crown area increased the overturning moment, while higher DBH and root plate mass increased the resistance moment. The resistance coefficient (Rm) was calculated by comparing resistive and overturning moments, classifying samples into three uprooting hazard levels. Trees with smaller crown areas, larger stems, and root plates tend to have higher resistance to uprooting, as indicated by higher Rm values. This qualitative mechanistic model provides a useful tool for assessing coniferous standing tree uprooting resistance.

2.
Plants (Basel) ; 11(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684280

ABSTRACT

Under the intensifying cyclonic activity, the wind resistance of European forests could be increased through science-based adaptive forest management, which requires the quantification of tree stability. In this regard, the dimensions of the soil-root plate can be directly attributed to tree wind resistance; however, naturally uprooted trees might be a biased source of information for the evaluation of adaptive measures due to uncontrolled conditions and uneven sample size. Therefore, the dimensions of the soil-root plates of naturally windthrown silver birch trees (Betula pendula Roth.) are compared to artificially overturned trees under a static tree-pulling test in Eastern Baltic region. The application of static tree-pulling overestimated the dimensions of the soil-root plates of silver birch compared to windthrown trees. The overestimation of soil-root plate dimensions was consistent spatially and across soil types, which is likely a regional adaptation to local wind climate. This implies that static tree-pulling is representative of the assessment of the effects of adaptive management on tree stability via the dimensions of the soil-root plates.

SELECTION OF CITATIONS
SEARCH DETAIL