Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Acta Pharmaceutica Sinica ; (12): 659-671, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965635

ABSTRACT

The function of the central nervous system was significantly altered under high-altitude hypoxia, and these changes lead to central nervous system disease and affected the metabolism of drugs in vivo. The blood-brain barrier is essential for maintaining central nervous system stability and plays a key role in the regulation of drug metabolism, and barrier structure and dysfunction affect drug transport to the brain. Changes in the structure and function of the blood-brain barrier and the transport of drugs across the blood-brain barrier under high-altitude hypoxia are regulated by changes in brain microvascular endothelial cells, astrocytes and pericytes, and are regulated by drug metabolism factors such as drug transporters and drug metabolizing enzymes. This article reviews the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier and the effects of changes in the blood-brain barrier on drug metabolism. We investigate the regulatory effects and underlying mechanisms of the blood-brain barrier and related pathways such as transcription factors, inflammatory factors and nuclear receptors on drug transport under high-altitude hypoxia.

2.
Acta Pharmaceutica Sinica ; (12): 50-60, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-872600

ABSTRACT

The function of circulatory system, nervous system and endocrine system is significantly changed in hypoxic environments. These changes affect the absorption, distribution, metabolism, and excretion of drugs in the body. Drug metabolizing enzymes and transporters are the main factors affecting drug metabolism; microRNA (miRNA) can act directly on drug metabolizing enzymes and transporters and can regulate their genes through hypoxia-inducible factor, inflammatory cytokines, and nuclear receptors. This article reviews the effect of hypoxia on drug metabolizing enzymes and transporters and the mechanisms by which miRNA modulates these proteins and their expression during hypoxia.

3.
Acta Pharmaceutica Sinica ; (12): 2308-2315, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-780338

ABSTRACT

Chuanxiong Qingfengteng mixture (CQM) is an analgesic developed based on clinical evidence and traditional Chinese medicine theory, which majorly consists of Ligusticum chuanxiong and Sinomenium acutum extracts. The current study aims to establish an UHPLC-UV method for the quantification of sinomenine and ligustrazine after CQM administration to rats, mice and cells, and to study the brain permeability of sinomenine and ligustrazine. The selectivity, linearity, accuracy, precision and stability of the established method demonstrated that it was suitable for the determination of sinomenine and ligustrazine in biological samples such as plasma, brain tissue and cellular fluid. After CQM was intravenously administered to rats and mice, both sinomenine and ligustrazine were detected in the brain from 5 min-2 h. The CSF/plasma partition coefficients (Kp, C/P) of each component were higher than those of brain tissue/plasma partition coefficient (Kp, B/P), the Kp, C/P and Kp, B/P of ligustrazine were higher than those of sinomenine. The concentrations between CSF and brain tissue were strongly correlated (Pearson's R>0.86, P<0.001). The unbound fraction in plasma of sinomenine and ligustrazine was 78.92% and 34.07%, respectively. The plasma protein binding rates displayed concentration-independent behavior within their respective in vivo concentration ranges. After CQM co-cultured with Caco-2 cell monolayers, the apparent permeability coefficient (Papp) of sinomenine and ligustrazine were 1.30×10-6 and 3.64×10-6 cm·s-1, respectively, following into the range of the intermediate and high permeability compounds. The efflux ratio (Papp(basolateral→apical)/Papp(apical→basolateral)) of sinomenine and ligustrazine were 0.67 and 0.85, respectively. When combined with P-glycoprotein inhibitor, the Papp of each component did not increase. In conclusion, the UHPLC-UV assay was successfully applied for the brain permeability study of CQM, the components of CQM can be quickly distributed to cerebrospinal fluid and pass through the blood-brain barrier. The brain permeability of ligustrazine is higher than that of sinomenine. The transmembrane transport of sinomenine and ligustrazine may not be affected by efflux transporters. All animal care and use complied with the Regulations for the Administration of Affairs Concerning Experimental Animals approved by the State Council of the People's Republic of China. All animal studies were implemented according to protocols, which were reviewed and approved by the Institutional Animal Care and Use Committee at Experimental Research Center, China Academy of Chinese Medical Sciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...