Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.961
Filter
1.
J Inorg Biochem ; 262: 112754, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39383670

ABSTRACT

This study is dedicated to the development of multimodal anticancer agents. We have obtained ruthenium complexes conjugated with the steroid-type antitumor drug abiraterone acetate in order to take advantage of the dual antitumor properties of both ruthenium and abiraterone. The compounds exhibit good antiproliferative activity against cancer cells, with selectivity over primary fibroblasts. Real-time cell analysis revealed that compound dichlorido(η66-p-cymene)(abiraterone acetate)ruthenium(II) had pronounced antiproliferation activity compared to abiraterone acetate. Flow cytometric studies on the mechanism of cell death have revealed that the most active compound induces apoptosis more effectively than abiraterone acetate. Our findings demonstrate the potential of this novel dual-action compound as promising candidates for further development as anticancer agents.

2.
IUCrdata ; 9(Pt 9): x240893, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39371669

ABSTRACT

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra-gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa-hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is -0.003 (14)]. Both the complex cation and the disordered PF6 - counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C-H⋯O and C-H⋯F inter-actions.

3.
Chemistry ; : e202402959, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367668

ABSTRACT

The cyclization of heteroatom-functionalized alkynes induced by d6-transition-metal centers has traditionally been associated with the vinylidene pathway. However, recent evidence suggests that d6-transition-metal centers can also activate alkynes through non-vinylidene pathways. In this study, we conducted a comprehensive experimental and theoretical investigation into the reactions between the Ru(II) complex [Ru([9]aneS3)(bpy)(OH2)]2+ and 2-alkynylanilines. Our study revealed that the selectivity between the vinylidene and non-vinylidene pathways can be tuned by reaction temperature, substrate, and solvent polarity. This strategic control allows for the preferential formation of either C2- or C3-metalated indole zwitterion complexes. Additionally, we identified a rare decyclization mechanism that enables the conversion of C2-metalated indoles to C3-metalated indoles, underscoring the significance of product stability in these pathways. Overall, this work demonstrates practical approaches to control the preference between vinylidene and non-vinylidene pathways, which is crucial for the design of new catalysts and metalated heterocyclic complexes.

4.
Small ; : e2407495, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350444

ABSTRACT

The rational design of pH-universal electrocatalyst with high-efficiency, low-cost and large current output suitable for industrial hydrogen evolution reaction (HER) is crucial for hydrogen production via water splitting. Herein, phase engineering of ruthenium (Ru) electrocatalyst comprised of metastable unconventional face-centered cubic (fcc) and conventional hexagonal close-packed (hcp) crystalline phase supported on nitrogen-doped carbon matrix (fcc/hcp-Ru/NC) is successfully synthesized through a facile pyrolysis approach. Fascinatingly, the fcc/hcp-Ru/NC displayed excellent electrocatalytic HER performance under a universal pH range. To deliver a current density of 10 mA cm-2, the fcc/hcp-Ru/NC required overpotentials of 16.8, 23.8 and 22.3 mV in 1 M KOH, 0.5 M H2SO4 and 1 M phosphate buffered solution (PBS), respectively. Even to drive an industrial-level current density of 500 and 1000 mA cm-2, the corresponding overpotentials are 189.8 and 284 mV in alkaline, 202 and 287 mV in acidic media, respectively. Experimental and theoretical calculation result unveiled that the charge migration from fcc-Ru to hcp-Ru induced by work function discrepancy within fcc/hcp-Ru/NC regulate the d-band center of Ru sites, which facilitated the water adsorption and dissociation, thus boosting the electrocatalytic HER performance. The present work paves the way for construction of novel and efficient electrocatalysts for energy conversion and storage.

5.
J Inorg Biochem ; 262: 112755, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39388808

ABSTRACT

The emergence of multidrug-resistant bacterial have caused severe burden for public health. Particularly, Staphylococcus aureus as one of ESKAPE pathogens have induced various infectious diseases and resulted in increasing deaths. Developing new antibacterial agents is still urgent and challenging. Fortunately, in this study, based on aggregation-induced emission (AIE) ruthenium complexes were designed and synthesized, which realized the high efficiency of reactive oxygen species generation and remarkably killed S. aureus unlike conventional antibiotics action. Significantly, owing to good singlet oxygen production ability, Ru1 at only 4 µg/mL of concentration displayed good antibacterial photodynamic therapy effect upon white light irradiation and could deplete essential coenzyme NADH to disrupt intracellular redox balance. Also, the electrostatic interaction between Ru1 and bacteria enhanced the possibility of antibacterial. Under light irradiation, Ru1 could efficiently inhibit the biofilm growth and avoid the development of drug-resistant. Furthermore, Ru1 possessed excellent biocompatibility and displayed remarkable therapy effect in treating mice-wound infections in vivo. These findings indicated that AIE-based ruthenium complexes as new antibacterial agent had great potential in photodynamic therapy of bacteria and addressing the drug-resistance crisis.

6.
Molecules ; 29(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339293

ABSTRACT

Ruthenium(II) polypyridyl complexes are being tested as potential anticancer agents in different therapies, which include conventional chemotherapy and light-activated approaches. A mechanistic study on a recently synthesized dual-action Ru(II) complex [Ru(bpy)2(sora)Cl]+ is described here. It is characterized by two mono-dentate leaving ligands, namely, chloride and sorafenib ligands, which make it possible to form a di-aquo complex able to bind DNA. At the same time, while the released sorafenib can induce ferroptosis, the complex is also able to act as a photosensitizer according to type II photodynamic therapy processes, thus generating one of the most harmful cytotoxic species, 1O2. In order to clarify the mechanism of action of the drug, computational strategies based on density functional theory are exploited. The photophysical properties of the complex, which include the absorption spectrum, the kinetics of ISC, and the character of all the excited states potentially involved in 1O2 generation, as well as the pathway providing the di-aquo complex, are fully explored. Interestingly, the outcomes show that light is needed to form the mono-aquo complex, after releasing both chloride and sorafenib ligands, while the second solvent molecule enters the coordination sphere of the metal once the system has come back to the ground-state potential energy surface. In order to simulate the interaction with canonical DNA, the di-aquo complex interaction with a guanine nucleobase as a model has also been studied. The whole study aims to elucidate the intricate details of the photodissociation process, which could help with designing tailored metal complexes as potential anticancer agents.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Sorafenib , Sorafenib/chemistry , Sorafenib/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ruthenium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
7.
Molecules ; 29(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39339413

ABSTRACT

A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.

8.
Molecules ; 29(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274887

ABSTRACT

The reaction of [RuNO(Py)2Cl2OH] with bipyridine in water-ethanol media results in trans-(NO, OH)-[RuNO(Py)(Bpy)ClOH]+ with an acceptable yield (60-70%) as hexafluorophosphate salt. Further treatment of the hydroxy-complex with concentrated HF quantitatively leads to trans-(NO, F)-[RuNO(Py)(Bpy)ClF]+. Despite the chirality of both coordination spheres, the hexafluorophosphate salts crystallized as racemates. A NO-linkage isomerism study of the obtained complexes was performed at 80 K with different excitation wavelengths (405, 450, 488 nm). The most favorable wavelengths for the MS1 isomer (Ru-ON) formation were 405 and 450 nm, where the linkage isomer populations were 17% and 1% for [RuNO(Py)(Bpy)ClOH]PF6 and [RuNO(Py)(Bpy)ClF]PF6. The shift of the excitation wavelength to the green (488 nm) sharply decreased the MS1 population. The IR-spectral signatures of MS1 were registered. Reverse-transformation Ru-ON (MS1)-Ru-NO (GS) was investigated for [RuNO(Py)(Bpy)ClOH]PF6 using IR and DSC techniques that made it possible to determine the kinetic parameters (Ea and k0) and decay temperature.

9.
Molecules ; 29(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275013

ABSTRACT

Trinuclear and tetranuclear ruthenium carbonyls of the types Ru3(CO)n(NO)2, Ru3(N)(CO)n(NO), Ru3(N)2(CO)n, Ru3(N)(CO)n(NCO), Ru3(CO)n(NCO)(NO), Ru4(N)(CO)n(NO), Ru4(N)(CO)n(NCO), and Ru4(N)2(CO)n related to species observed experimentally in the chemistry of Ru3(CO)10(µ-NO)2 have been investigated using density functional theory. In all cases, the experimentally observed structures have been found to be low-energy structures. The low-energy trinuclear structures typically have a central strongly bent Ru-Ru-Ru chain with terminal CO groups and bridging nitrosyl, isocyanate, and/or nitride ligands across the end of the chain. The low-energy tetranuclear structures typically have a central Ru4N unit with terminal CO groups and a non-bonded pair of ruthenium atoms bridged by a nitrosyl or isocyanate group.

10.
Appl Radiat Isot ; 213: 111461, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217857

ABSTRACT

The zirconium metal - organic framework MIP-202(Zr), based on L-aspartic acid, was prepared by hydrothermal method and used for study of ruthenium adsorption from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD), infra red spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The batch adsorption experiment was performed for determination of adsorption equilibrium, kinetics and thermodynamics parameters to Ru(III) from aqueous solution on MIP-202(Zr). The data of ruthenium sorption onto MIP-202(Zr) were fitted and analyzed by the Langmuir, Freundlich and Temkin equilibrium isotherm models, while the Langumir adsorption isotherm models fit the best. Kinetic data were analyzed by four kinetic models, and ruthenium sorption on MIP202(Zr) can be describes the best by intra particle diffusion (Weber Morris). Analysis of thermodynamic properties of ruthenium ions sorption onto MIP-202(Zr) shows that the sorption process has a spontaneous and endothermic nature and is energetically beneficial.

11.
Nano Lett ; 24(38): 11779-11792, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39268754

ABSTRACT

Electrochemical acidic oxygen evolution reaction (OER) is an important part for water electrolysis utilizing a proton exchange membrane (PEM) apparatus for industrial H2 production. RuO2 has garnered considerable attention as a potential acidic OER electrocatalyst. However, the overoxidation of Ru active sites under high potential conditions is usually harmful for activity and stability, thereby posing a challenge for large-scale commercialization, which needs effective strategies to circumvent the leaching of Ru and further activate Ru sites. Herein, a Mini-Review is presented to summarize the recent developments regarding the activation and stabilization of the Ru active sites and lattice oxygen through the modulation of the d-band center, coordination environment, bridged heteroatoms, and vacancy engineering, as well as structural protection strategies and reaction pathway optimization to promote the acidic OER activity and stability of RuO2-based electrocatalysts. This Mini-Review offers a profound understanding of the design of RuO2-based electrocatalysts with greatly enhanced acidic OER performances.

12.
ACS Sens ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320965

ABSTRACT

The development of all-solid-state precise pH electrodes holds significant importance in various fields, particularly in marine scientific research. To achieve this goal, we proposed a novel fabrication technique for an all-solid-state ruthenium oxide (Ti/RuOx) pH electrode. We thin-coated the RuCl3 precursor solution on a titanium wire substrate using a heat gun repeatedly and then calcined it in a mixture of Li2CO3 and Na2O2 at 400 °C to obtain a ruthenium oxide (RuOx) film. This RuOx film was subjected to acid treatment with dilute nitric acid, and a polytetrafluoroethylene heat shrink tube was wrapped around the non-RuOx film area. Finally, the RuOx film was fully immersed in a pH 4.00 buffer solution, finalizing the electrode preparation. The RuOx film exhibits a dense and regular conical morphology. The Ti/RuOx electrode demonstrates a good near-Nernstian response slope (e.g., -59.04 mV/pH at 25 °C), high linearity (e.g., R2 = 0.9999), rapid response (<1 s), low hysteresis (<3 mV), excellent reversibility, and good repeatability in the pH range of 2.00-10.00. After full hydration, the Ti/RuOx electrode shows a potential drift of 8.5 mV and a drift rate of approximately 0.27 mV/day over a period of 25 days, indicating good long-term stability. Furthermore, the Ti/RuOx electrode exhibits robust resistance against interference from various ions and low-concentration redox substances, ensuring a long storage life (at least 280 days), and high measurement accuracy (e.g., ± 0.02 pH units) for diverse water samples, including seawater, freshwater, and tap water. This study has evaluated the potential of the Ti/RuOx electrode as a reliable and accurate tool for pH measurements in marine scientific applications.

13.
Angew Chem Int Ed Engl ; : e202415542, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324233

ABSTRACT

Liquid organic hydrogen carriers (LOHCs) are attractive platform molecules that play an important role in hydrogen energy storage and utilization. The multi-step hydrogenation of toluene (TOL) to methylcyclohexane (MCH) has been widely studied in the LOCHs systems,  noble metal catalysts such as Ru has exhibited good performance in multi-step hydrogenation reactions, while the application is still hindered by their high cost and low specific activity. In this study, a series of Ru species were fabricated to investigate their structural evolution in the TOL multi-step hydrogenation reaction. The fully exposed and atomically dispersed Ru clusters, composed of an average of 3 Ru atoms, exhibit superior catalytic performance in TOL multi-step hydrogenation. Moreover, it delivers a high turnover frequency of 9850.3 h-1 under the relatively mild reaction, compared with those of single atoms and nanoparticles, and shows a notable advantage over catalysts reported in previous studies. From density functional theory calculations, the overall barrier of the TOL multi-step hydrogenation reaction over the fully exposed Ru clusters is lower than that of single atoms and nanoparticles, resulting in higher activity. This work provides an efficient strategy to regulate the reaction pathway of multi-step complicated catalytic reactions by designing fully exposed metal cluster catalysts.

14.
Nitric Oxide ; 152: 58-68, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313019

ABSTRACT

Four isomeric nitrosyl ruthenium complexes [RuCl(2mqn)(Val)(NO)] (1-4) were prepared (2mqn, 2-methyl-8-hydroxyquinoline; Val, l-valine) and characterized by 1H NMR, 13C NMR, absorption spectrum, electrospray ionization mass spectrometry, and X-ray crystal diffraction. Time-resolved FT-IR and fluorescence spectroscopy were used to monitor photo-induced NO release in solution, while NO released in living cells was imaged using a selective fluorescent probe. The isomeric complexes showed different levels of cytotoxicity against HeLa cells, and slightly photo-enhanced anti-proliferative activity was observed. The isomeric complexes 1-4 inhibited the growth of HeLa cells by inducing apoptosis and promoted cell cycle arrest in the S phase. Furthermore, they showed relatively lower cytotoxicity against the human liver cell line HL-7702. The different spatial configurations of the complexes is close related with the selective binding of the isomeric complexes with serum albumin, which provide insight into the potential applications of the nitrosyl ruthenium complexes.

15.
Mol Pharm ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327727

ABSTRACT

Flavonoid-based organometallic complexes were revealed to be novel bioactive compounds. The taxifolin ruthenium-p-cymene nanoparticle (TaxRu-NPs) was produced in this study, and the toxicological assessment was done prior to in vivo chemotherapeutic research. Furthermore, the in vitro chemotherapeutic investigation used the A549 and NCI-H460 lung cancer cell lines. The in vitro study found that TaxRu-NPs induced apoptosis in lung cancer cells and hindered their ability to form colonies and migrate. The in vivo study showed that treatment with TaxRu-NPs restored the histological structure of a normal lung with less hyperplasia and lymphocytic infiltration. Furthermore, the treatment downregulated the angiogenic marker VEGF and the cell survival protein ß-catenin and upregulated apoptotic markers like p53 and caspase-3. TaxRu-NPs treatment additionally raised the apoptotic index and decreased cancer cell growth. Finally, TaxRu-NPs effectively alleviate lung cancer by activating p53-mediated apoptosis and preventing angiogenesis and metastasis by decreasing the VEGF/ß-catenin pathway.

16.
Chemistry ; : e202402788, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331384

ABSTRACT

In this contribution, we describe the various research domains in which RuII alkynyl derivatives are involved. Their peculiar molecular properties stem from a strong and intimate overlap between the metal centered d orbitals and the p system of the acetylide ligands, resulting in plethora of fascinating properties such as strong and tunable visible light absorption with a strong MLCT character  essential for sensing, photovoltaics, light-harvesting applications or non-linear optical properties. Likewise, the d/p mixing results in tunable redox properties at low potential due to the raising of the HOMO level, and making those compounds particularly suited to achieve redox switching of various properties associated to the acetylide conjugated ligand, such as photochromism, luminescence or magnetism, for charge transport at the molecular level and in field effect transistor devices, or charge storage for memory devices. Altogether, we show in this review the potential of RuII acetylide compounds, insisting on the molecular design and suggesting further research developments for this class of organometallic dyes, including supramolecular chemistry.

17.
Mater Today Bio ; 28: 101209, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221205

ABSTRACT

The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 µW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.

18.
Angew Chem Int Ed Engl ; : e202416101, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288073

ABSTRACT

Multiplex imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real-time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIII metallacrowns bearing RuII polypyridyl complexes, LnRu-3 (Ln = YIII, YbIII, NdIII, ErIII). Relaxed structures of YRu-3 in the ground and the excited electronic states have been calculated using dispersion-corrected density functional theory methods. Detailed photophysical studies of LnRu-3 have demonstrated that characteristic emission signals of YbIII, NdIII and ErIII in the NIR-II range can be sensitized upon excitation in the visible range through RuII-centered metal-to-ligand charge transfer (MLCT) states. We have also showed that these NIR-II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue-mimicking phantoms. This work opens unprecedented perspectives for NIR-II multiplex imaging using LnIII-based molecular compounds.

19.
Angew Chem Int Ed Engl ; : e202412430, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305156

ABSTRACT

A diiodo ruthenium olefin metathesis pre-catalyst was employed to achieve remarkably selective cross-metathesis reactions of prenylated 1,6-dienes, effectively overcoming the entropically favored intramolecular ring-closing metathesis. This reaction was investigated using Density Functional Theory (DFT) computations and fine-tuned through the application of a Design of Experiments (DoE) approach. The potential of this innovative process was demonstrated through the unprecedented functionalization of various terpene natural products via cross-metathesis, resulting in the synthesis of new derivatives in a single step.

20.
Ocul Oncol Pathol ; 10(3): 162-167, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39224526

ABSTRACT

Introduction: Local recurrence of conjunctival melanoma (CM) is common after excision. Local radiotherapy is an effective adjuvant treatment option, and brachytherapy with ruthenium-106 (106Ru) is one such option. Thus, herein, we aimed to describe our experience with and the clinical results of post-excision adjuvant 106Ru plaque brachytherapy in patients with CM. Methods: Nineteen patients (8 men and 11 women) received adjuvant brachytherapy with a 106Ru plaque after tumor excision. The mean adjuvant dose administered was 109 Gy (range, 80-134 Gy), and a depth of only 2.2 mm was targeted because the tumor had been excised. A full ophthalmological examination including visual acuity testing, slit-lamp examination, and indirect ophthalmoscopy was performed before therapy and at every postoperative follow-up. The mean follow-up period was 62 months (range, 2-144 months). Results: Three patients developed a recurrence in a nontreated area, at either the conjunctiva bulbi or the conjunctiva tarsi. None of the patients developed a recurrence in the treated area. The local control rate was 84% (16/19). Conclusion: 106Ru plaque brachytherapy is an effective adjuvant treatment to minimize the risk of local recurrence after excision of a CM. Patients have to be followed up regularly and carefully for the early detection of recurrence.

SELECTION OF CITATIONS
SEARCH DETAIL