Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867450

ABSTRACT

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.

2.
Hum Vaccin Immunother ; 19(3): 2275457, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37968136

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy is an innovative immunotherapeutic approach that utilizes genetically modified T-cells to eliminate cancer cells using the specificity of a monoclonal antibody (mAb) coupled to the potent cytotoxicity of the T-lymphocyte. CAR-T therapy has yielded significant improvements in relapsed/refractory B-cell malignancies. Given these successes, CAR-T has quickly spread to other hematologic malignancies and is being increasingly explored in solid tumors. From early clinical applications to present day, CAR-T cell therapy has been accompanied by significant toxicities, namely cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and on-target off-tumor (OTOT) effects. While medical management has improved for CRS and ICANS, the ongoing threat of refractory symptoms and unanticipated idiosyncratic toxicities highlights the need for more powerful safety measures. This is particularly poignant as CAR T-cell therapy continues to expand into the solid tumor space, where the risk of unpredictable toxicities remains high. We will review CAR-T as an immunotherapeutic approach including emergence of unique toxicities throughout development. We will discuss known and novel strategies to mitigate these toxicities; additional safety challenges in the treatment of solid tumors, and how the inducible Caspase 9 "safety switch" provides an ideal platform for continued exploration.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/therapeutic use , Antibodies, Monoclonal , Cytokine Release Syndrome/therapy , Neoplasms/therapy
3.
Cancer Biol Ther ; 24(1): 2232146, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37439774

ABSTRACT

Gene edited and engineered cell-based therapies are a promising approach for treating a variety of disorders, including cancer. However, the ability of engineered cells to persist for prolonged periods along with possible toxicity raises concerns over the safety of these approaches. Although a number of different one-dimensional suicide systems have been incorporated into therapeutic cell types, the incorporation of a two-layered suicide system that allows controlled killing of therapeutic cells at different time points is needed. In this study, we engineered a variety of therapeutic cells to express two different kill switches, RapaCasp9 and HSV-TK and utilized Rapamycin and Ganciclovir respectively to activate these kill switches. We show that the function of both RapaCasp9 and HSV-TK molecules is preserved and can be activated to induce apoptosis detected early (24 h) and late (48 h) post-activation respectively, with no toxicity. In vivo, we show the eradication of a majority of cells after treatment in subcutaneous and orthotopic models. Furthermore, we demonstrate how both suicide switches work independently and can be activated sequentially for an improved killing, thus ensuring a failsafe mechanism in case the activation of a single one of them is not sufficient to eliminate the cells. Our findings highlight the reliability of the double suicide system, effective on a variety of cells with different biological characteristics, independent of their anatomic presence.


Subject(s)
Genes, Transgenic, Suicide , Genetic Therapy , Humans , Genetic Therapy/methods , Reproducibility of Results , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Apoptosis
4.
J Autoimmun ; 138: 103057, 2023 07.
Article in English | MEDLINE | ID: mdl-37224732

ABSTRACT

The forkhead family transcription factor (FOXP3) is an essential regulator for the development of regulatory T cells (Tregs) and orchestrates both suppressive function and Treg lineage identity. Stable expression of FOXP3 enables Tregs to maintain immune homeostasis and prevent autoimmunity. However, under pro-inflammatory conditions, FOXP3 expression in Tregs can become unstable, leading to loss of suppressive function and conversion into pathogenic T effector cells. Therefore, the success of adoptive cell therapy with chimeric antigen receptor (CAR) Tregs is highly dependent on the stability of FOXP3 expression to ensure the safety of the cell product. To warrant the stable expression of FOXP3 in CAR-Treg products, we have developed an HLA-A2-specific CAR vector that co-expresses FOXP3. The transduction of isolated human Tregs with the FOXP3-CAR led to an increase in the safety and efficacy of the CAR-Treg product. In a hostile microenvironment, under pro-inflammatory and IL-2-deficient conditions, FOXP3-CAR-Tregs showed a stable expression of FOXP3 compared to Control-CAR-Tregs. Furthermore, additional exogenous expression of FOXP3 did not induce phenotypic alterations and dysfunctions such as cell exhaustion, loss of functional Treg characteristics or abnormal cytokine secretion. In a humanized mouse model, FOXP3-CAR-Tregs displayed an excellent ability to prevent allograft rejection. Furthermore, FOXP3-CAR-Tregs revealed coherent Treg niche-filling capabilities. Overexpression of FOXP3 in CAR-Tregs has thereby the potential to increase the efficacy and reliability of cellular products, promoting their clinical use in organ transplantation and autoimmune diseases.


Subject(s)
Autoimmune Diseases , Receptors, Chimeric Antigen , Animals , Humans , Mice , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Reproducibility of Results , T-Lymphocytes, Regulatory
5.
Front Immunol ; 13: 975233, 2022.
Article in English | MEDLINE | ID: mdl-36189285

ABSTRACT

Gene-modified cellular therapies carry inherent risks of severe and potentially fatal adverse events, including the expansion of alloreactive cells or malignant transformation due to insertional mutagenesis. Strategies to mitigate uncontrolled proliferation of gene-modified cells include co-transfection of a suicide gene, such as the inducible caspase 9 safety switch (ΔiC9). However, the activation of the ΔiC9 fails to completely eliminate all gene-modified cells. Therefore, we tested a two suicide gene system used independently or together, with the goal of complete cell elimination. The first approach combined the ΔiC9 with an inducible caspase 8, ΔiC8, which lacks the endogenous prodomain. The rationale was to use a second caspase with an alternative and complementary mechanism of action. Jurkat cells co-transduced to co-express the ΔiC8, activatable by a BB homodimerizer, and the ΔiC9 activatable by the rapamycin analog sirolimus were used in a model to estimate the degree of inducible cell elimination. We found that both agents could activate each caspase independently, with enhanced elimination with superior reduction in cell regrowth of gene-modified cells when both systems were activated simultaneously. A second approach was employed in parallel, combining the ΔiC9 with the RQR8 compact suicide gene. RQR8 incorporates a CD20 mimotope, targeted by the anti-CD20 monoclonal antibody rituxan, and the QBend10, a ΔCD34 selectable marker. Likewise, enhanced cell elimination with superior reduction in cell regrowth was observed when both systems were activated together. A dose-titration effect was also noted utilizing the BB homodimerizer, whereas sirolimus remained very potent at minimal concentrations. Further in vivo studies are needed to validate these novel combination systems, which may play a role in future cancer therapies or regenerative medicine.


Subject(s)
Genes, Transgenic, Suicide , Sirolimus , Caspase 8/genetics , Caspase 9/genetics , Caspase 9/metabolism , Genes, Transgenic, Suicide/genetics , Humans , Rituximab , Sirolimus/pharmacology
6.
Mol Cells ; 45(7): 479-494, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35356894

ABSTRACT

Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Thymidine Kinase , Animals , Antiviral Agents/pharmacology , Ganciclovir/therapeutic use , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Mesenchymal Stem Cells/metabolism , Mice , Neoplasms/therapy , Simplexvirus/enzymology , Thymidine Kinase/therapeutic use
7.
Hum Gene Ther ; 32(19-20): 1029-1043, 2021 10.
Article in English | MEDLINE | ID: mdl-34662227

ABSTRACT

Immune cell-based therapies can induce potent antitumor effects but are also often associated with severe toxicities. We previously developed a PD-1-based small molecule-regulated reversible T cell activation switch to control the activity of cellular immunotherapy products. This chemically regulated and SH2-delivered-inhibitory tail (CRASH-IT) switch relies on the noncovalent interaction of switch SH2 domains with phosphorylated ITAM motifs in either chimeric antigen receptors or T cell receptors. After this interaction, the immunoreceptor tyrosine-based inhibition motif/switch motif (ITIM/ITSM) containing PD-1 domain present in the CRASH-IT switch induces robust inhibition of T cell signaling, and CRASH-IT-mediated suppression of T cell activity can be reversed by small molecule-induced switch proteolysis. With the aim to develop improved second-generation switch systems, we here analyze the possibility space of both the immune cell receptor docking and inhibitory signaling domains that allow control over T cell activity. Importantly, these analyses demonstrate that the inhibitory domains that most potently suppress antigen receptor signaling in primary human T cells are not derived from inhibitory receptors, such as PD-1 and BTLA, that are endogenously expressed in T cells, but include ITIM/ITSM containing inhibitory domains derived from receptors present in myeloid cells. In addition, we demonstrate that physical proximity of the inhibitory domain to the antigen receptor is crucial to efficiently suppress T cell activation, as only switch designs that employ SH2 domains directly interacting with ITAM motifs in antigen receptors efficiently and reversibly inhibit T cell functionality. These data demonstrate the flexible and interchangeable nature of immune cell signaling domains, and inform the design of a synthetic proximity-based switch system with a superior dynamic range.


Subject(s)
T-Lymphocytes , src Homology Domains , Humans , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , T-Lymphocytes/metabolism
8.
J Pers Med ; 11(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204193

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined. Suicide effects were slightly stronger when the suicide gene was delivered through lentiviral (LV) vectors compared to integration into the AAVS1 locus through TALEN technology. An optimized HSV-thymidine kinase and the inducible Caspase 9 both mediated drug-induced, efficient in vitro elimination of transgene-positive iPSCs. Choice of promoter allowed selective elimination of distinct populations within the graft: the hOct4 short response element restricted transgene expression to iPSCs, while the CAGs promoter ubiquitously drove expression in iPSCs and their progeny. Remarkably, both safety switches were able to prevent in vivo teratoma development and even effectively eliminated established teratomas formed by LV CAGs-transgenic iPSCs. These optimized tools to increase safety provide an important step towards clinical application of iPSC-derived transplants.

10.
Ann Transl Med ; 9(22): 1641, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34988150

ABSTRACT

BACKGROUND: Cell therapy as a promising therapeutic modality to treat cancer has been intensively studied for decades. However, the clinical trials have indicated that patients under T cell therapy may develop severe cytokine release syndrome resulting in hospitalization or even death. Furthermore, genetic modifications to promote proliferation and persistence of T cells could result in high numbers of long-lived engineered cells in patients after treatment. METHODS: We incorporated the pro-apoptotic truncated BH3 interacting-domain death agonist (tBID) with the mutant ecDHFR destabilizing domain to form a novel recombinant protein as the major component of an engineered tBID-based safety switch system, which would be unstable and quickly degraded in the absence of trimethoprim (TMP) but, upon TMP treatment, should become stabilized and allow tBID to induce cell death experimentally. RESULTS: The novel tBID-based safety switch could be regulated through a small molecule inducer, TMP, to control undesired toxicity or ablate the engineered cells as needed. We systematically compared and assessed several tBID-based safety switch constructs with the clinically validated safety switches, including human herpes simplex virus thymidine kinase (HSV-TK) and inducible Caspase 9 (iCasp9). With optimization, we were able to achieve significant killing potency in vitro in Jurkat or human primary T cells. CONCLUSIONS: We demonstrated that our engineered tBID-based safety switch was able to eliminate up to ~90% of transduced human primary T cells within 72 h after activation, providing an alternative switch system to manage safety concerns for cell therapy.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-876048

ABSTRACT

@#[Abstract] Objective: To investigate whether AP1903, a small-molecule chemical inducer, can terminate the cytotoxicity of CD19CAR-T cells over-expressing iCasp9 suicide gene in vivo and in vitro. Methods: CD19CAR-T cells over-expressing iCasp9 (iCasp9-CD19CAR-T) were constructed and co-incubated with AP1903. Then, the cell phenotype and apoptosis were detected by Flow cytometry, and the iCasp9/CID suicide gene system was verified on K562 and T cells, respectively. The cytotoxicity of iCasp9-CD19CAR-T cells was detected in vivo (survival rate of NCG mice bearing Raji cell transplanted xenograft) and in vitro (cell killing function was detected by Flow cytometry) under the administration of AP1903. Results: Compared with CD19CAR-T cells, iCasp9-CD19CAR-T cells showed in significant difference in proliferation, phenotype and cytotoxicity both in vitro and in vivo (all P>0.05). At 2 h after AP1903 administration, the apoptosis rates of K562 and T cells co-expressing iCasp9 and CD19CAR were (33.8±0.9)% and (27.95±0.35)%, respectively; and at 24 h after AP1903 administration, the apoptosis rates reached 100% in both cell lines. The in vitro cytotoxicity of iCasp9-CD19CAR-T cells induced by AP1903 was significantly lower than that without AP1903 treatment (P<0.01); the 60-day survival rate of mice bearing Raji cell transplanted tumor treated with AP1903-induced iCasp9-CD19CAR-T cells was also significantly lower than those treated with iCasp9-CD19CAR-T cells alone (P<0.01). Conclusion: AP1903 can effectively terminate the cytotoxicity of CD19CAR-T cells over-expressing iCasp9 suicide gene in vitro and in vivo.

12.
Stem Cells Transl Med ; 9(11): 1378-1388, 2020 11.
Article in English | MEDLINE | ID: mdl-32662231

ABSTRACT

Human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) and embryonic stem cells, hold great promise for cell-based therapies, but safety concerns that complicate consideration for routine clinical use remain. Installing a "safety switch" based on the inducible caspase-9 (iCASP9) suicide gene system should offer added control over undesirable cell replication or activity. Previous studies utilized lentiviral vectors to integrate the iCASP9 system into T cells and iPSCs. This method results in random genomic insertion of the suicide switch and inefficient killing of the cells after the switch is "turned on" with a small molecule (eg, AP1903). To improve the safety and efficiency of the iCASP9 system for use in iPSC-based therapy, we precisely installed the system into a genomic safe harbor, the AAVS1 locus in the PPP1R12C gene. We then evaluated the efficiencies of different promoters to drive iCASP9 expression in human iPSCs. We report that the commonly used EF1α promoter is silenced in iPSCs, and that the endogenous promoter of the PPP1R12C gene is not strong enough to drive high levels of iCASP9 expression. However, the CAG promoter induces strong and stable iCASP9 expression in iPSCs, and activation of this system with AP1903 leads to rapid killing and complete elimination of iPSCs and their derivatives, including MSCs and chondrocytes, in vitro. Furthermore, iPSC-derived teratomas shrank dramatically or were completely eliminated after administration of AP1903 in mice. Our data suggest significant improvements on existing iCASP9 suicide switch technologies and may serve as a guide to other groups seeking to improve the safety of stem cell-based therapies.


Subject(s)
Genes, Transgenic, Suicide/genetics , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Humans , Mice
13.
JACC Clin Electrophysiol ; 6(3): 304-310, 2020 03.
Article in English | MEDLINE | ID: mdl-32192681

ABSTRACT

OBJECTIVES: This study investigated the performance of Temporary Pacing via an Externalized Active-Fixation (TPEAF) lead. BACKGROUND: The incidence of cardiac implantable electronic device infections is increasing, which necessitates the need for transvenous lead extraction (TLE). Pacemaker-dependent patients require temporary pacing during the guideline-recommended waiting period before reimplantation. Data regarding safety and efficacy of TPEAF leads are very limited. METHODS: We evaluated patients implanted with TPEAF leads post-TLE at our center between April 2004 and December 2017. RESULTS: TPEAF leads were placed in 158 patients. The mean age was 74 ± 11 years. The median duration of the temporary lead was 6 days (range 1 to 29). There were 4 procedural complications (2.5% incidence): 1 patient had cardiac arrest from hyperkalemia, 2 developed cardiac tamponade, and 1 had profuse bleeding from the entry point of the leads. There were 13 complications post-implantation (8.2% incidence): 8 lead dislodgments, 1 elevated pacing threshold, 2 vegetations on the temporary lead, 1 pneumothorax, and 1 loss of capture due to the generator "safety switch." All dislodgements occurred within 24 h, except 1 on day 3. Sixteen patients died during the hospital stay: 10 due to septic shock, 2 due to hyperkalemic cardiac arrest, 3 due to ventricular tachycardia, and 1 due to a massive cerebrovascular accident. CONCLUSIONS: The use of TPEAF leads is safe and efficacious in pacemaker-dependent patients post-TLE. Dislodgement can occur within the first 24 h. The presence of persistent fever and positive blood cultures should raise concern for vegetation on the temporary lead.


Subject(s)
Cardiac Pacing, Artificial , Defibrillators, Implantable , Pacemaker, Artificial , Aged , Aged, 80 and over , Cardiac Pacing, Artificial/adverse effects , Cardiac Pacing, Artificial/methods , Cardiac Pacing, Artificial/statistics & numerical data , Defibrillators, Implantable/adverse effects , Defibrillators, Implantable/statistics & numerical data , Device Removal/statistics & numerical data , Female , Humans , Male , Middle Aged , Pacemaker, Artificial/adverse effects , Pacemaker, Artificial/statistics & numerical data , Treatment Outcome
14.
Front Immunol ; 10: 1854, 2019.
Article in English | MEDLINE | ID: mdl-31447852

ABSTRACT

Delayed immune reconstitution and the consequently high rates of leukemia relapse and infectious complications are the main limitations of haploidentical hematopoietic stem cell transplantation. Donor T cell addback can accelerate immune reconstitution but the therapeutic window between graft-vs.-host disease and protective immunity is very narrow in the haploidentical transplant setting. Hence, strategies to improve the safety and efficacy of adoptive T cell transfer are particularly relevant in this setting. Adoptive T cell transfer strategies in haploidentical transplantation include the use of antigen-specific T cells, allodepletion and alloanergy induction, immune modulation by the co-infusion of regulatory cell populations, and the use of safety switch gene-modified T cells. Whilst common principles apply, there are features that are unique to haploidentical transplantation, where HLA-mismatching directly impacts on immune reconstitution, and shared vs. non-shared HLA-allele can be an important consideration in antigen-specific T cell therapy. This review will also present an update on safety switch gene-modified T cells, which can be conditionally deleted in the event of severe graft- vs.-host disease or other adverse events. Herpes Virus Simplex Thymidine Kinase (HSVtk) and inducible caspase-9 (iCasp9) are safety switches that have undergone multicenter studies in haploidentical transplantation with encouraging results. These gene-modified cells, which are trackable long-term, have also provided important insights on the fate of adoptively transferred T cells. In this review, we will discuss the biology of post-transplant T cell immune reconstitution and the impact of HLA-mismatching, and the different cellular therapy strategies that can help accelerate T cell immune reconstitution after haploidentical transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Leukemia/therapy , T-Lymphocytes/immunology , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Herpesvirus 4, Human/immunology , Histocompatibility Testing , Humans , Immune Reconstitution , Minor Histocompatibility Antigens/immunology , T-Lymphocytes, Regulatory/immunology
15.
J Cardiovasc Electrophysiol ; 30(7): 1102-1107, 2019 07.
Article in English | MEDLINE | ID: mdl-30983092

ABSTRACT

Several Boston Scientific pacemaker models have a known issue with intermittent oversensing of the minute ventilation sensor when paired with non-Boston Scientific leads. Several of our patients with these hybrid systems have had transient out of range impedances and oversensing after safety switching which we suspected may be related. A retrospective analysis of 395 patients who had pacemakers implanted between 2015-2017 found that transient out of range impedances with safety switching was present in 9% of Boston Scientific pacemakers paired with Abbott or Medtronic leads compared with 0% in other device-lead combinations (P = 0.0089). We postulate that the root cause of the minute ventilation oversensing and transient high impedance issue is the same, a header-lead interaction from low-level incompatibility. Recognizing this issue is critical to prevent unnecessary lead revisions or extractions as it can be prevented with a simple reprogramming of lead pace/sense configuration.


Subject(s)
Arrhythmias, Cardiac/therapy , Cardiac Pacing, Artificial/adverse effects , Pacemaker, Artificial , Action Potentials , Aged , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Device Removal , Electric Impedance , Equipment Design , Equipment Failure , Female , Heart Rate , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Time Factors , Treatment Outcome
16.
Mol Ther Oncolytics ; 12: 124-137, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30740516

ABSTRACT

Use of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow in vivo elimination of CAR-T cells. iMC costimulation induced by systemic rimiducid administration enhanced CAR-T cell proliferation, cytokine secretion, and antitumor efficacy in both in vitro assays and xenograft tumor models. Conversely, rapamycin-mediated iRC9 dimerization rapidly induced apoptosis in a dose-dependent fashion as an approach to mitigate therapy-related toxicity. This novel, regulatable dual-switch system may promote greater CAR-T cell expansion and prolonged persistence in a drug-dependent manner while providing a safety switch to mitigate toxicity concerns.

17.
Methods Mol Biol ; 1895: 57-73, 2019.
Article in English | MEDLINE | ID: mdl-30539529

ABSTRACT

Chimeric antigen receptor (CAR)-redirected T-cells are a powerful tool for the treatment of several type of cancers; however, they can cause several adverse effects including cytokine release syndrome, off-target effects resulting in potentially fatal organ damage or even death. Particularly, for CAR T-cells redirected toward acute myeloid leukemia (AML) antigens myelosuppression can be a challenge. The previously validated inducible Caspase9 (iC9) suicide gene system is one of the approaches to control the infused cells in vivo through its activation with a nontherapeutic chemical inducer of dimerizer (CID). We performed a preclinical validation using a model of CD33+ AML, and generated iC9 CAR T-cells co-expressing a CAR targeting the AML-associated antigen CD33 and a selectable marker (ΔCD19). ΔCD19 selected (sel.) iC9-CAR.CD33 T-cells were effective in controlling leukemia growth in vitro, and could be partially eliminated (76%) using a chemical inducer of dimerization that activates iC9. Moreover, to completely eliminate residual cells, a second targeted agent was added. Future plans with these methods are to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant. Additional strategies that we are currently validating include (1) the modulation of the suicide gene activation, using different concentrations of the inducing agent(s), to be able to eliminate CAR T-cells modified by a regulatable gene, ideally aiming at preserving a proportion of the infused cells (and their antitumor activity) for mild to moderate toxicities, or (2) the co-expression of an inhibitory CAR aiming at sparing normal cells co-expressing an antigen not shared with the tumor.


Subject(s)
Caspase 9/genetics , Immunotherapy, Adoptive , Immunotherapy/methods , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen , Sialic Acid Binding Ig-like Lectin 3/immunology , Genes, Transgenic, Suicide , Humans , Leukemia, Myeloid, Acute/immunology
18.
Mol Ther ; 25(10): 2270-2279, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28757080

ABSTRACT

The incorporation of an endogenous safety switch represents a rational strategy for the control of toxicities following the administration of adoptive T cell therapies. An ideal safety switch should be capable of depleting the transferred T cells with minimal injury to normal tissues. We generated a fusion receptor by engineering a cryptic 806 epitope of human epidermal growth factor receptor (EGFR) into the N terminus of the full-length human folate receptor 1 (FOLR1), designated as FR806. The expression of FR806 allows transduced T cells to be targeted with CH12, a monoclonal antibody recognizing the 806 epitope, but not wild-type EGFR in healthy tissues. FR806, therefore, constitutes a specific cell-surface marker for the elimination of transduced T cells. We demonstrate that the antibody-drug conjugate (ADC) CH12-MMAF is efficiently internalized by FR806-expressing T cells and has the potential to eliminate them. Transfected T cells could, furthermore, be efficiently detected and purified using CH12 antibodies. In immuno-compromised mice, CH12-MMAF eliminated the majority of transferred T cells expressing FR806 and anti-CD19 chimeric antigen receptor (CAR). The selectivity for the 806 epitope and internalization capacity of FOLR1 makes FR806 an efficient safety switch, which may additionally be used as a detection and purification biomarker for human T cell immunotherapies.


Subject(s)
Adoptive Transfer/methods , Biomarkers/blood , T-Lymphocytes/immunology , Animals , Cell Line , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Mice , Mice, SCID , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Mol Ther ; 25(3): 580-592, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28187946

ABSTRACT

Immunotherapy with T cells expressing the chimeric antigen receptor (CAR) specific for the CD19 antigen (CD19.CAR-Ts) is a very effective treatment in B cell lymphoid malignancies. However, B cell aplasia and cytokine release syndrome (CRS) secondary to the infusion of CD19.CAR-Ts remain significant drawbacks. The inclusion of safety switches into the vector encoding the CAR is seen as the safest method to terminate the effects of CD19.CAR-Ts in case of severe toxicities or after achieving long-term sustained remissions. By contrast, the complete elimination of CD19.CAR-Ts when CRS occurs may jeopardize clinical responses as CRS and antitumor activity seem to concur. We have demonstrated, in a humanized mouse model, that the inducible caspase-9 (iC9) safety switch can eliminate CD19.CAR-Ts in a dose-dependent manner, allowing either a selective containment of CD19.CAR-T expansion in case of CRS or complete deletion on demand granting normal B cell reconstitution.


Subject(s)
Antigens, CD19/immunology , Caspase 9/metabolism , Cytotoxicity, Immunologic , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Apoptosis/genetics , Apoptosis/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Proliferation , Cell Survival , Gene Expression , Gene Order , Genetic Vectors/genetics , Graft Survival , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Lymphocyte Activation/immunology , Mice , Molecular Imaging , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Protein Binding/immunology , Receptors, Antigen, T-Cell/genetics
20.
Pharmaceuticals (Basel) ; 8(2): 230-49, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26110321

ABSTRACT

T-cells genetically redirected with a chimeric antigen receptor (CAR) to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.

SELECTION OF CITATIONS
SEARCH DETAIL
...