Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Pharmacol Rep ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965200

ABSTRACT

Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.

2.
Heliyon ; 10(12): e33453, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39015808

ABSTRACT

Saikosaponin D (SSd) is a naturally active product with strong pharmacological activity found in Bupleurum scorzonerifolium Willd. Studies have shown that endophytic fungi have great potential as sources of natural medicines. Fusarium acuminatum (CHS3), an SSd-producing endophytic fungus, was isolated from B. scorzonerifolium. To elucidate the effect of host plants on the production of SSd in CHS3, CHS3 was co-cultured with suspension cells of B. scorzonerifolium and SSd was detected using high-performance liquid chromatography (HPLC). Transcriptome sequencing (RNA-Seq) of CHS3 before and after co-culture was performed using an Illumina HiSeq 2500 platform. The results indicated that the content of SSd synthesised by CHS3 increased after co-culture with suspension cells of B. scorzonerifolium. Transcriptome analysis of CHS3 with differentially expressed genes (DEGs) showed that 1202 and 1049 genes were upregulated and downregulated, respectively, after co-culture. Thirty genes associated with SSd synthesis and 11 genes related to terpene backbone biosynthesis were annotated to the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Combined with transcriptome data, it was speculated that the mevalonate (MVA) pathway is a possible pathway for SSd synthesis in CHS3, and the expression of key enzyme genes (HMGR, HMGCS, GGPS1, MVK, FDFT1, FNTB) was validated by qRT-PCR. In conclusion, the endophytic fungus CHS3 can form an interactive relationship with its host, thereby promoting SSd biosynthesis and accumulation by upregulating the expression of key enzyme genes in the biosynthesis pathway.

3.
Phytomedicine ; 132: 155829, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38941813

ABSTRACT

BACKGROUND: Since the pathogenesis of depression is complex, antidepressant therapy remains unsatisfactory. Recent evidence suggests a link between depression and lipid metabolism. Saikosaponin (SS) exhibits antidepression and lipid-regulating effects in modern pharmacology. However, it is unknown whether lipid regulation is the key mechanism of the SS antidepressant effect and how it works. PURPOSE: In this study, we investigated the relationship between the antidepressant activity of SS and the regulation of lipid metabolism and explored potential mechanisms. METHODS: APOE-/- mice, in combination with the chronic unpredictable mild stress (CUMS) model, were used to study the relationship between SS antidepressant activity and lipid metabolism through behavioral, electrophysiological techniques, and non-targeted lipidomics. Western blot, primary cell culture technology, and laser speckle cerebral blood flow imaging were employed to elucidate potential mechanisms. GraphPad Prism was used for statistical analysis, and p < 0.05 was considered statistically significant. RESULTS: APOE-/- mice exhibit more severe depressive-like behavior and dysregulation of sphingolipid metabolism in CUMS. SS alleviates depressive behavior and cortical sphingolipid metabolism disorder caused by CUMS, but has no effect on APOE-/- mice. SS alleviates the imbalance between ceramide (Cer) and sphingomyelin (SM) through acidic sphingomyelinase (AMSase). In addition, SS regulates neuronal glutamate release via sphingolipid metabolism, thereby alleviating the CUMS-induced inhibition of neurovascular coupling (regulates metabotropic glutamate receptor and IP3 receptor), which ameliorates the reduction of cerebral blood flow in depressed mice. CONCLUSION: Our study highlights the role of lipid metabolism in the antidepressant activity of SS and explores its underlying mechanisms. This study provided new insights into the better understanding of the antidepressant mechanisms of phytomedicine while increasing the possibility of lipid metabolism as a therapeutic strategy for depression.

4.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931199

ABSTRACT

Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.


Subject(s)
Apoptosis , Autophagy , Colorectal Neoplasms , Lung Neoplasms , Oleanolic Acid , Saponins , Saponins/pharmacology , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Autophagy/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Apoptosis/drug effects , Humans , Lung Neoplasms/secondary , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Inbred BALB C , Antineoplastic Agents, Phytogenic/pharmacology , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Mice, Nude
5.
Article in English | MEDLINE | ID: mdl-38864908

ABSTRACT

The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.

6.
Nat Prod Res ; : 1-8, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635418

ABSTRACT

This study aimed to investigate the effects of SSa, one of the major triterpenoid saponins extracted from Radix bupleuri, on neutrophil extracellular trap (NET) formation and the mechanism associated with this process. Using Sytox green and immunofluorescence assays, we found SSa rapidly induced NET formation, which depended on NADPH oxidase (NOX)-independent ROS production and autophagy. Pharmacologic inhibitor studies indicated that ERK and PI3K/AKT signalling were also required for SSa-induced NET formation, whereas protein arginine deiminase 4 (PAD4) was not required. Furthermore, we found that SSa promoted neutrophil bactericidal activity mainly through NET formation. Based on flow cytometry and the Cell Counting Kit-8 (CCK-8) assays, the results demonstrated that SSa-induced NET formation occurred without neutrophil death. Taken together, these findings indicated that SSa could be a potential natural product to boost innate immune defense against pathogen attack via NET formation.

7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597443

ABSTRACT

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Subject(s)
Epilepsy , Oleanolic Acid/analogs & derivatives , Pentylenetetrazole , Saponins , Male , Mice , Animals , Pentylenetetrazole/adverse effects , Interleukin-10 , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Depression , Corticosterone/metabolism , Corticosterone/pharmacology , Corticosterone/therapeutic use , Mice, Inbred C57BL , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Disease Models, Animal
8.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Article in English | MEDLINE | ID: mdl-38569867

ABSTRACT

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Subject(s)
Animal Experimentation , Insulin Resistance , Oleanolic Acid/analogs & derivatives , Saponins , Mice , Male , Animals , Insulin Resistance/physiology , Mice, Inbred C57BL , Obesity/drug therapy , Liver , Inflammation/metabolism , Glucose/metabolism , Cholesterol , Diet, High-Fat/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Insulin/metabolism
9.
J Appl Toxicol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462915

ABSTRACT

Acute pancreatitis represents an inflammatory disease featuring pancreatic necrosis and inflammation. Inflammatory injury of pancreatic acinar cells (PACs) is critically involved in the initiation and progression of acute pancreatitis. Pyroptosis, a new kind of programmed cell death concomitant with a low-grade inflammatory reaction, plays a function in acute pancreatitis pathology. It is unclear whether saikosaponin d (SSd), a pharmacologically active natural product, could protect PACs by regulating pyroptosis. Here, we established a PAC injury model in vitro using cerulein to treat AR42J cells. SSd restored viability and proliferation and lowered the release of pancreatic enzymes and inflammatory interleukins in cerulein-treated AR42J cells. Cerulein-induced pyroptosis was evidenced by typical ultrastructural changes and NLRP3/caspase-1 activation in AR42J cells, but SSd attenuated cerulein-induced pyroptosis and inhibited NLRP3/caspase-1 pathway. Mechanically, SSd reduced mitochondrial damage and mtDNA release, and blocked cGAS-STING signaling in AR42J cells treated with cerulein, contributing to the inhibition of NLRP3-mediated pyroptosis. Furthermore, SSd abolished cerulein-elevated oxidative stress in AR42J cells, leading to the mitigation of mitochondrial damage and inhibition of cGAS-STING signaling and pyroptosis. In conclusion, SSd protected PACs against cerulein-induced pyroptosis by alleviating mitochondrial damage and inhibiting the cGAS-STING pathway, and it could be a therapeutic candidate for acute pancreatitis.

10.
Int Immunopharmacol ; 130: 111749, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38430804

ABSTRACT

AIMS: Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS: Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1ß, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS: SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION: SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.


Subject(s)
Antidepressive Agents , Depression , Dry Eye Syndromes , MAP Kinase Kinase Kinases , NF-kappa B , Oleanolic Acid , Saponins , Ubiquitin-Protein Ligases , Animals , Male , Mice , Depression/complications , Depression/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/etiology , Inflammation/drug therapy , MAP Kinase Kinase Kinases/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Saponins/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
11.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Article in English | MEDLINE | ID: mdl-38458969

ABSTRACT

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Subject(s)
Benzimidazoles , Carbocyanines , Mitochondrial Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Oleanolic Acid/analogs & derivatives , Saponins , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Pilocarpine/toxicity , Tumor Necrosis Factor-alpha/genetics , Caspases/metabolism , Interleukin-6 , Signal Transduction , Inflammation/metabolism
12.
Pharmacol Res ; 201: 107090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309381

ABSTRACT

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Subject(s)
Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Depression/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Neuronal Plasticity
13.
J Orthop Surg Res ; 19(1): 151, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389105

ABSTRACT

OBJECTIVE: This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4). METHODS: A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 µmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed. RESULTS: In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes. CONCLUSIONS: SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.


Subject(s)
MicroRNAs , Oleanolic Acid/analogs & derivatives , Osteoarthritis , Saponins , Mice , Animals , MicroRNAs/metabolism , Signal Transduction , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Chondrocytes/metabolism , Autophagy/genetics , Apoptosis
14.
Int Immunopharmacol ; 127: 111324, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38070467

ABSTRACT

Saikosaponin-d (SSd) is a triterpene saponin from the roots of Bupleurum chinese. Recent studies have revealed its antidepressant activity, but its mechanism involved is unclear. This study's objective was to ascertain how SSd may reduce depression in depressed mice subjected to chronic unpredictable animal stress (CUMS) and to investigate the mechanisms underlying these effects. Models of CUMS depression were established and different groups were treated with SSd and escitalopram. After the last day of administration of the treatment, behavioral tests were performed. ELISA was used to measure the expression of IL-1ß, TNF-α, and IL-18, and western blot was used to measure the presence of proteins associated with NLRP3. Hippocampal neuronal damage was observed using Nissl staining, and NLRP3 ubiquitination assay was performed by immunoprecipitation and gene silencing. An inflammatory cell model was constructed by treating BV2 cells with lipopolysaccharides (LPS) and adenosine triphosphate (ATP) to verify the ubiquitination modification of NLRP3 by SSd. Behavioral tests demonstrated that SSd effectively alleviated depression-like symptoms. SSd should substantially limit the degrees of proteins associated with NLRP3, as properly as limit the harm to hippocampal neurons. Gene silencing results showed that SSd regulates NLRP3 through the E3 ubiquitin ligase MARCHF7. In vitro, SSd remarkably increased the protein expression of K48-linked ubiquitin in inflammatory BV2 cells, while decreasing the protein levels of NLRP3. Our findings suggest that SSd has antidepressant effects in CUMS mice by promoting ubiquitination of NLRP3 to inhibit inflammasome activation and improve the inflammatory state.


Subject(s)
Inflammasomes , Oleanolic Acid/analogs & derivatives , Saponins , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Depression/drug therapy , Depression/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Ubiquitination
15.
J Nat Med ; 78(1): 160-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804411

ABSTRACT

Saikosaponins are naturally occurring oleanane-type triterpenoids that are found in Bupleuri radix (root of Bupleurum falcatum) and exhibit a broad biological activity spectrum. Saikosaponin b2 (SSb2) is the main saikosaponin in Kampo medicine extracts and is a designated quality control marker for the same in the Japanese Pharmacopeia. Although some monoclonal antibodies (mAbs) against saikosaponins have been produced to evaluate the quality of Bupleuri radix and related products, anti-SSb2 mAbs have not been used to quantify SSb2 in Kampo medicines. To address this knowledge gap, we herein established a new hybridoma cell line secreting a highly specific anti-SSb2 mAb and developed an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on this mAb for the detection of SSb2 in Bupleuri radix-containing Kampo medicines. The generated SSb2-recognized mAb exhibited high specificity to SSb2 in icELISA. The developed assay featured high sensitivity (linearity range = 1.95-125 ng/ml), accuracy, precision and reproducibility (coefficient of variation < 5%), and the thus determined SSb2 contents were strongly correlated with those obtained using liquid chromatograph-mass spectrometer. These results suggest that the anti-SSb2 mAb-based icELISA method can be used for the quality control and standardization of Kampo medicines containing Bupleuri radix.


Subject(s)
Oleanolic Acid , Saponins , Antibodies, Monoclonal , Medicine, Kampo , Reproducibility of Results , Saponins/analysis , Quality Control , Enzyme-Linked Immunosorbent Assay
16.
Fitoterapia ; 173: 105778, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128620

ABSTRACT

Saikosaponin d (SSd) is the main component of Bupleuri Radix, a famous traditional Chinese herbal medicine, with high medicinal value. An endophytic fungus (CHS3) was isolated from Bupleurum scorzonerifolium Willd. in the early stage of our research, and we found that CHS3 could promote the accumulation of SSd in Bupleurum scorzonerifolium Willd. suspension cells (BSS cells). It is of practical significance to identify the mechanism that CHS3 promoted the accumulation of SSd and increased the production of SSd in suspension cells. To search the influence of CHS3 on SSd synthesis in the BSS cells, we co-cultured CHS3 with the BSS cells and compared the SSd content in BSS cells before and after co-culture using high-performance liquid chromatography (HPLC). Then the Illumina HiSeq 2500 was performed to detect the transcriptome of the BSS cells before and after co-culture and analyzed for the KEGG enrichment. The expression of genes involved in SSd synthesis was finally corroborated by qPCR analysis. Among which 11 key genes in connection with SSd synthesis were increased in BSS cells of co-cultured group compared with the BSS cells of the control group. In conclusion, CHS3 could promote the accumulation of SSd in BSS cells, and the molecular mechanism was related to its ability to regulate the MVA pathway, the calcium signaling pathway, and the AMPK signaling pathway by upregulating the expressions of ANT, CypD, CaM, AMPK, AATC, HMGS, HMGR, MVK, MVD, SS, and SE.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Oleanolic Acid/analogs & derivatives , Saponins , Bupleurum/chemistry , Drugs, Chinese Herbal/chemistry , AMP-Activated Protein Kinases , Molecular Structure , Saponins/chemistry , Gene Expression Profiling
17.
J Ethnopharmacol ; 319(Pt 3): 117289, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37844745

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Bupleuri, also named "Chaihu" in Chinese, is a substance derived from the dry roots of Bupleurum chinense DC. [Apiaceae] and Bupleurum scorzonerifolium Willd. [Apiaceae]. Radix Bupleuri was initially recorded as a medicinal herb in Shen Nong Ben Cao Jing, the earliest monograph concerning traditional Chinese medicine (TCM). Ever since, Radix Bupleuri has been broadly used to alleviate exterior syndrome, disperse heat, modulate the liver-qi, and elevate yang-qi in TCM. Radix Bupleuri has also been utilized as an important component in Xiaoyaosan, a classical formula for relieving depression, which was originated from the famous Chinese medical book called "Tai Ping Hui Min He Ji Ju Fang" in Song Dynasty. Currently, many valuable pharmacological effects of Radix Bupleuri have been explored, such as antidepressant, neuroprotective activities, antiinflammation, anticancer, immunoregulation, etc. Former studies have illustrated that Saikosaponin A (SSa), one of the primary active components of Radix Bupleuri, possesses potential antidepressant properties. However, the underlying mechanisms still remain unknown. AIM OF THE STUDY: We used a chronic social defeat stress (CSDS) mouse model to explore the ameliorative effects and potential mechanisms of SSa in depressive disorder in vivo. MATERIALS AND METHODS: The CSDS mouse model was established and mice underwent behavioral studies using assays such as the social interaction test (SIT), sucrose preference test (SPT), forced-swim test (FST), tail suspension test (TST), and open field test (OFT). Western blotting, immunofluorescence, and Golgi staining were performed to investigate signaling pathway activity, and alterations in synaptic spines in the hippocampus. To model the anticipated interaction between SSa and Tet1, molecular docking and microscale thermophoresis (MST) techniques were employed. Finally, sh-RNA Tet1 was employed for validation via lentiviral transfection in CSDS mice to confirm the requirement of Tet1 for SSA efficacy. RESULTS: SSa dramatically reduced depressed symptoms, boosted the expression of Tet1, Notch, DLL3, and BDNF, encouraged hippocampus development, and enhanced the dendritic spine density of hippocampal neurons. In contrast, Tet1 knockdown in CSDS mice dampened the beneficial effects of SSa on depressive symptoms. CONCLUSIONS: Therefore, our results suggest that SSa significantly activates the Tet1/Notch/DLL3 signaling pathways and promotes hippocampal neurogenesis to exert antidepressant effects in the CSDS mouse model in vivo. The present results also provide new insight into the importance of the Tet1/DLL3/Notch pathways as potential targets for novel antidepressant development.


Subject(s)
Antidepressive Agents , Depression , Male , Mice , Animals , Depression/drug therapy , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Hippocampus , Neurogenesis , Signal Transduction
18.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5278-5284, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114117

ABSTRACT

This study aims to investigate the effect and mechanism of saikosaponin D on the proliferation, apoptosis, and autophagy of pancreatic cancer Panc-1 cells. The cell counting kit(CCK-8) was used to examine the effects of 7, 10, 13, 16, 19, 22, 25, and 28 µmol·L~(-1) saikosaponin D on the proliferation of Panc-1 cells. Three groups including the control(0 µmol·L~(-1)), low-concentration(10 µmol·L~(-1)) saikosaponin D, and high-concentration(16 µmol·L~(-1)) saikosaponin D groups were designed. The colony formation assay was employed to measure the effect of saikosaponin D on the colony formation rate of Panc-1 cells. The cells treated with saikosaponin D were stained with hematoxylin-eosin(HE), and the changes of cell morphology were observed. Hoechst 33258 fluorescent staining was used to detect the effect of saikosaponin D on the cell apoptosis. The autophagy staining assay kit with MDC was used to examine the effect of saikosaponin D on the autophagy of Panc-1 cells. Western blot and immunocytochemistry(ICC) were employed to examine the effect of saikosaponin D on the expression levels and distribution of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), cleaved caspase-3, autophagy-associated protein Beclin1, microtubule-associated protein light chain 3(LC3), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results showed that compared with the control group, saikosaponin D decreased the proliferation rate of Panc-1 cells in a dose-dependent and time-dependent manner. The colony formation rate of the cells significantly decreased after saikosaponin D treatment. Compared with the control group, the cells treated with saikosaponin D became small, accompanied by the formation of apoptotic bodies. The saikosaponin D groups showed increased apoptosis rate and autophagic vesicle accumulation. Compared with the control group, saikosaponin D up-regulated the expression of Bax, cleaved caspase3, Beclin1, LC3Ⅱ/LC3Ⅰ and down-regulated the expression of Bcl-2, caspase-3, p-Akt/Akt, and p-mTOR/mTOR. In addition, these proteins mainly existed in the cytoplasm. In conclusion, saikosaponin D can inhibit the proliferation and induce the apoptosis and autophagy of Panc-1 cells via inhibiting the Akt/mTOR pathway.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/genetics , Caspase 3 , bcl-2-Associated X Protein , Beclin-1/pharmacology , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , Apoptosis , Pancreatic Neoplasms/drug therapy , Caspases , Autophagy
19.
Poult Sci ; 102(12): 103155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871490

ABSTRACT

Fatty liver hemorrhagic syndrome is a widespread metabolic disease in laying hens that decreases egg production and even causes death in severe cases. Many traditional Chinese medicine ingredients, such as saikosaponin a (SSa), have been shown to alleviate fatty liver, but the underlying mechanisms remain unclear. In this study, we aimed to explore the alleviation of dietary SSa on excessive hepatic lipid deposition and the interactions between intestinal microbiota and bile acid (BA) in laying hens. Fifty-four 35-wk-old laying hens were randomly allocated into 3 treatment groups with 6 replicates (3 birds per replicate) and fed with a basal diet (CON), high-energy and low-protein diet (HELP), and HELP diet with 30 mg/kg SSa (HELP + SSa). SSa reversed diet-induced egg production rate decrease (P < 0.05). SSa could potently ameliorate HELP-induced accumulation of hepatic cholesterol and liver injury via the increase (P < 0.05) of mRNA expression of BA synthesis gene, such as cholesterol 7 alpha-hydroxylase 1. SSa treatment alleviated gut dysbiosis, especially reducing (P < 0.05) the relative abundance of bile salt hydrolase (BSH)-producing bacteria such as Lactobacillus, Bifidobacterium, and Turicibacter. Ileal BA metabolomic analysis revealed that SSa increased (P < 0.05) the content of tauro-conjugated BAs, mainly taurochenodeoxycholic acid and tauro-α-muricholic acid. The mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 19 were decreased (P < 0.05) in intestine, which was associated with increased gene expression of enzymes in the BA synthesis that reduced the levels of cholesterol. Moreover, SSa treatment inhibited intestinal BA reabsorption via decreasing (P < 0.05) the mRNA expression of apical sodium-dependent bile acid transporter. Our findings indicated that SSa reduced liver cholesterol accumulation and alleviated fatty liver in laying hens through microbiota-BA-intestinal FXR crosstalk.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Bile Acids and Salts/metabolism , Chickens/metabolism , Liver/metabolism , Diet/veterinary , Fatty Liver/metabolism , Fatty Liver/veterinary , Cholesterol/metabolism , RNA, Messenger/metabolism
20.
Article in English | MEDLINE | ID: mdl-37818570

ABSTRACT

OBJECTIVE: Functional dyspepsia (FD) is one of the most common gastrointestinal diseases, with a global prevalence of 10%-30%. However, the specific pathogenesis of FD has not yet been determined. As such, the aim of this study was to investigate the effects of saikosaponin D (SSD) administration on the apoptosis, autophagy, and morphological structure of the intestinal cells of Cajal (ICCs) in FD. Methods:A rat model of FD was constructed by stimulating the rat tail with a sponge clamp at one-third of the distal tail length. An autophagy model was constructed for ICCs using glutamate. The apoptosis rate in each group of cells was determined using flow cytometry. The expressions of ghrelin and substance P (SP) were detected using ELISA. RESULTS: The body weight and food intake of male and female rats in the SSD group were consistently higher than those in the model group. The SSD group showed substantial improvement compared with the model group, with no inflammatory cell infiltration and normal gastric mucosal structures. After intervention with SSD, the ultrastructure of the ICCs considerably improved and was clear. Compared with the model group, the expressions of LC3 I/II, ghrelin, and SP proteins in the SSD group were significantly upregulated, and the apoptosis rate was significantly reduced. CONCLUSION: The administration of SSD improved ICC morphology and structure, inhibited excessive autophagy, and improved FD, a gastrointestinal motility disorder, by regulating ghrelin and SP levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...