Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 239(5): 1665-1678, 2023 09.
Article in English | MEDLINE | ID: mdl-37381089

ABSTRACT

Nutrient allocation is central to understanding plant ecological strategies and forest roles in biogeochemical cycles. Thought to be mainly driven by environmental conditions, nutrient allocation to woody organs, especially to living tissues, is poorly understood. To examine the role of differences in living tissues (sapwood, SW, vs inner bark, IB), organs, ecological strategies, and environmental conditions in driving nutrient allocation and scaling in woody plants, we quantified nitrogen and phosphorus in main stems and coarse roots of 45 species from three tropical ecosystems with contrasting precipitation, fire regime, and soil nutrients. Nutrient concentration variation was mostly explained by differences between IB and SW, followed by differences between species and, in the case of phosphorus, soil nutrient availability. IB nutrient concentrations were four times those of SW, with root tissues having slightly higher concentrations than stem tissues. Scaling between IB and SW, and between stems and roots, was generally isometric. In cross-sections, IB contributed half of total nutrients in roots and a third in stems. Our results highlight the important role of IB and SW for nutrient storage, the coordination in nutrient allocation across tissues and organs, and the need to differentiate between IB and SW to understand plant nutrient allocation.


Subject(s)
Ecosystem , Nitrogen , Phosphorus , Plant Bark , Plant Leaves , Trees , Soil , Plant Roots , Plant Stems
2.
Planta ; 257(1): 19, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36538159

ABSTRACT

MAIN CONCLUSION: Anastomosed laticifers with intrusive growth produce latex containing methyl comate and betulin with economic and ecological value in arid environments. Climatic factors influence laticifer development in the apical meristem and vascular cambium. Latex is a complex emulsion with high medicinal as well as ecological value related to plant survival. Marsdenia zehntneri is a shrubby plant that grows on limestone outcrops in the semiarid regions of Brazil. We sought to characterize the ontogenesis of the laticifers of this species and to relate that process to climatic seasonality and phenology through anatomical, ultrastructural, and micro-morphometric evaluations of the apical meristem and vascular cambium. The histochemistry of the secretory structure was investigated and the chemical composition of the latex was analyzed. Phenological assessments were performed by monitoring phenological events for 1 year. The laticifers network of M. zehntneri permeates the entire primary and secondary body of the plant, providing a wide distribution system of defensive compounds. Its laticifers, of a distinct mixed type (anastomosed, with intrusive growth), are numerous and voluminous in the apical meristem but scarce and minute in the secondary phloem. Latex secretion involves the participation of oleoplasts, polysomes, and dictyosomes. Methyl 2,3-dihydroxy-ursan-23-oate, methyl 3-hydroxy-ursan-23-oate, and betulin are encountered in high proportions in the latex and have ecological and medicinal functions. The development of primary laticifers is related to the resumption of apical meristem activity with increasing day length at the end of the austral winter. The development of secondary laticifers is related to high summer temperatures and rainfall that favor vascular cambium activity. The wide distribution of laticifers, their seasonal pattern of secretion, and their latex composition contribute to the adaptation of M. zehntneri to its natural environment.


Subject(s)
Apocynaceae , Marsdenia , Latex , Meristem
3.
Plant Cell Environ ; 44(1): 156-170, 2021 01.
Article in English | MEDLINE | ID: mdl-33034374

ABSTRACT

Non-structural carbohydrates (NSC) are crucial for forest resilience, but little is known regarding the role of bark in NSC storage. However, bark's abundance in woody stems and its large living fraction make it potentially key for NSC storage. We quantified total NSC, soluble sugar (SS) and starch concentrations in the most living region of bark (inner bark, IB), and sapwood of twigs, trunks and roots of 45 woody species from three contrasting tropical climates spanning global extremes of bark diversity and wide phylogenetic diversity. NSC concentrations were similar (total NSC, starch) or higher (SS) in IB than wood, with concentrations co-varying strongly. NSC concentrations varied widely across organs and species within communities and were not significantly affected by climate, leaf habit or the presence of photosynthetic bark. Starch concentration tended to increase with density, but only in wood. IB contributed substantially to NSC storage, accounting for 17-36% of total NSC, 23-47% of SS and 15-33% of starch pools. Further examination of the drivers of variation in IB NSC concentration, and taking into account the substantial contribution of IB to NSC pools, will be crucial to understand the role of storage in plant environmental adaptation.


Subject(s)
Carbohydrate Metabolism , Plant Bark/metabolism , Trees/metabolism , Bursera/metabolism , Carbohydrates/analysis , Diospyros/metabolism , Lamiaceae/metabolism , Plant Bark/anatomy & histology , Plant Bark/chemistry , Tropical Climate , Water/metabolism , Wood/metabolism
4.
New Phytol ; 221(1): 209-217, 2019 01.
Article in English | MEDLINE | ID: mdl-30076782

ABSTRACT

To grow straight, plants need a motor system that controls posture by generating forces to offset gravity. This motor function in trees was long thought to be only controlled by internal forces induced in wood. Here we provide evidence that bark is involved in the generation of mechanical stresses in several tree species. Saplings of nine tropical species were grown tilted and staked in a shadehouse and the change in curvature of the stem was measured after releasing from the pole and after removing the bark. This first experiment evidenced the contribution of bark in the up-righting movement of tree stems. Combined mechanical measurements of released strains on adult trees and microstructural observations in both transverse and longitudinal/tangential plane enabled us to identify the mechanism responsible for the development of asymmetric mechanical stress in the bark of stems of these species. This mechanism does not result from cell wall maturation like in wood, or from the direct action of turgor pressure like in unlignified organs, but is the consequence of the interaction between wood radial pressure and a smartly organized trellis structure in the inner bark.


Subject(s)
Phloem/physiology , Plant Bark/physiology , Trees/growth & development , Biomechanical Phenomena , French Guiana , Plant Stems/anatomy & histology , Plant Stems/growth & development , Stress, Mechanical , Trees/physiology , Tropical Climate , Wood/physiology
SELECTION OF CITATIONS
SEARCH DETAIL