Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 26(1): 41-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921398

ABSTRACT

Fabaceae produce seeds with water-impermeable seed coats, i.e., physical dormancy (PY). We hypothesized that the proportion of PY seeds will increase with the dryness of the habitat, and some key seed ecological traits will be strongly associated with different levels of PY. Fresh seed of 25 Fabaceae species collected in northern India were used for imbibition and germination experiments to determine the proportion of seeds with PY and of nondormant (ND) seeds compared to their Sri Lankan congeners. Seed coat:seed mass ratio (SCR), 1000 seed weight, seed shape index (SSI), embryo type and median germination time of ND seeds were determined. Four imbibition and germination patterns were identified among seeds of the studied species. Seeds collected from Indian populations had a higher proportion of PY seeds than those of Sri Lankan populations. We identified a type of embryo called 'spatulate axile' that had not been identified before among the studied species. Species with ND seeds had a lower SCR and a higher SSI than those with PY. Our hypothesis was confirmed since populations from drier habitats in India produce a higher proportion of PY seeds than those from Sri Lanka. A low SCR ensures minimal resistance to germinating seeds, while seeds with a high SSI have a lower tendency to incorporate into the soil seed bank. Thus, these seed traits aid the fast germination of ND seeds, often dispersed just before the rainy season.


Subject(s)
Fabaceae , Germination , Plant Dormancy , Seeds , Ecosystem
2.
Am J Bot ; 106(3): 371-376, 2019 03.
Article in English | MEDLINE | ID: mdl-30866038

ABSTRACT

PREMISE OF THE STUDY: Numerous studies have treated the mass of a whole seed as an integrated unit, although the components seed kernel and seed coat play different roles and are subject to different evolutionary selection pressures. In this study, we provided the first global-scale quantification of the relative biomass investments in seed coats and seed kernels. We tested the following hypotheses: there is a negative allometry between seed kernel mass and seed coat mass, and therefore, seed coat ratio (SCR) is negatively correlated with seed mass. METHODS: We compiled a global-scale data set from the published literature, including 680 plant species from 420 genera and 108 families. The relationships between seed components were quantified using standardized major axis regression, ordinary least squares regression, and phylogenetic independent analyses. KEY RESULTS: We found a weak but significantly negative allometry between seed kernel mass and seed coat mass, which resulted in a negative relationship between seed mass and SCR. Similar results were found after accounting for the phylogeny. CONCLUSIONS: The finding that smaller seeds invest more in protective tissues but less in stored reserves may explain the general prediction that larger seeds suffer greater predation than smaller seeds. Furthermore, this weak allometry may also explain, at least in part, why so many studies failed to identify a clear pattern of the effect of seed mass on many ecological processes. Our study suggests that the allometry between the two seed components must be considered when evaluating the ecological significance and evolutionary history of seed mass.


Subject(s)
Biological Evolution , Biomass , Plant Physiological Phenomena , Seeds/physiology , Phylogeny
3.
Plants (Basel) ; 2(1): 1-15, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-27137363

ABSTRACT

Lianas are an important component of tropical forests, and may reach their highest densities in disturbed areas. However, information on seed and germination characteristics is scarce. Twenty Amazon liana species were screened for their germination characteristics, including light dependence, tolerance of desiccation and of alternating temperatures; these characteristics are considered important for the germination success in areas with relatively open canopies. Between 31-1,420 seeds per species were available, as 15 species seeds came from one mother plant. We studied seed biometry and conducted germination trials with fresh seeds (12 h light daily, or dark) and desiccated seeds at 25 °C. Germination at alternating temperatures (20/30 °C, 15/35 °C) was analyzed for nine species. Of the 20 species, eight species with the largest seeds had desiccation sensitive seeds; this is the first record for species of four genera and one family, where only desiccation tolerant seeds are otherwise recorded. Light-dependent germination was found in three species (0.01-0.015 g) and is the first record for two; however, results were based on seeds from one plant per species. Alternating temperatures of 15/35 °C decreased final germination of four out of nine species, and response to 20/30 °C cycles varied compared to constant 25 °C. Seed and germination characteristics of the species ranged from pioneer to climax traits indicating that establishment of lianas from seeds may be confined to species specific niches.

SELECTION OF CITATIONS
SEARCH DETAIL