ABSTRACT
BACKGROUND: The presence of phenolic compounds in sunflower is well reported in the literature; however, knowledge is scarce when it comes to the composition of other secondary metabolites in this species and their by-products. This work evaluated, for the first time, the phytochemical composition of sunflower meal produced in Brazil. A combination of mixture design and central composite rotatable design 23 models was then applied to maximize the recovery of bioactive compounds using ecologically friendly solvents and concentrating by applying activated carbon, a sustainable adsorbent. The product of this extraction-concentration was also evaluated by an untargeted metabolomic approach using ultra-performance liquid chromatography coupled to mass spectrometry. RESULTS: A diverse and abundant profile of phenolic compounds was obtained from Brazilian sunflower meal: in total, 51 natural products were tentatively identified, 35 of which for the first time in sunflower. The sorption capacity of the activated charcoal, in the optimized process conditions, was effective in the separation and concentration of minority secondary metabolites. The ecofriendly extract proved to be enriched in plumberoside, p-coumaric acid, and alkaloids. CONCLUSIONS: Investigation of the phytochemical profile of sunflower meal produced in Brazil pointed to several secondary metabolites reported for the first time in sunflower samples, including phenolic compounds, alkaloids, and terpenes. The use of activated charcoal in an alkaline medium as an adsorbent for the concentration of these phytochemicals, from an aqueous extract, generated a potentially cost-effective, ecofriendly extract, enriched in minor metabolites, indicating a possible innovative way to selectively obtain these compounds from sunflower meal. © 2022 Society of Chemical Industry.
Subject(s)
Helianthus , Charcoal , Chromatography, High Pressure Liquid/methods , Phenols/analysis , Phytochemicals/chemistry , Plant Extracts/chemistryABSTRACT
This work describes an electrochemical sensor for the selective recognition and quantification of amoxicillin and a ß-lactam antibiotic in real samples. This sensor consists of a carbon paste electrode (CPE) modified with mag-MIP (magnetic molecularly imprinted polymer), which was prepared by precipitation method via free radical using acrylamide (AAm) as functional monomer, N,N'-methylenebisacrylamide (MBAA) as a crosslinker, and potassium persulfate (KPS) as initiator, to functionalized magnetic nanoparticles. The magnetic non-imprinted polymers (mag-NIP) were prepared using the same experimental procedure without analyte and used for the preparation of a CPE for comparative studies. The morphological, structural, and electrochemical characteristics of the nanostructured material were evaluated using Field emission gun scanning electron microscopy (FEG-SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Vibrating sample magnetometry (VSM), X-ray diffraction (XRD), and voltammetric technique. Electrochemical experiments performed by square wave voltammetry show that the mag-MIP/CPE sensor had a better signal response compared to the non-imprinted polymer-modified electrode (mag-NIP/CPE). The sensor showed a linear range from 2.5 to 57 µmol L-1 of amoxicillin (r 2 = 0.9964), with a limit of detection and a limit of quantification of 0.75 and 2.48 µmol L-1, respectively. No significant interference in the electrochemical signal of amoxicillin was observed during the testing experiments in real samples (skimmed milk and river water). The proposed mag-MIP/CPE sensor could be used as a good alternative method to confront other techniques to determine amoxicillin in different samples.