Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.805
Filter
1.
Article in English | MEDLINE | ID: mdl-39022877

ABSTRACT

The prevalence of metabolic dysfunction associated-steatotic liver disease (MASLD) (formerly known as nonalcoholic fatty liver disease; NAFLD) is estimated at around 32% of the world's population, resulting in a major healthcare concern in recent times. Current pharmaceutical methods lack efficacy for the treatment of the disease because of suboptimal pharmacokinetic parameters including poor bioavailability, short half-life, and premature clearance. Designing an efficient drug delivery system that provides a protective environment is critical for addressing these challenges. Such a system should aim to enhance the cellular uptake of drugs, improve their bioavailability, and reduce the chances of rapid clearance. Here, we developed nanoengineered natural cell membrane-derived nanoparticles (CMNs) incorporated with a model drug, rosuvastatin, in the bilayer assembly of CMNs to reduce the accumulation of lipids in hepatocytes, a hallmark of MASLD. We used a cell extrusion technique to develop self-assembled CMNs with precise size control compared to the cell shearing method. Interestingly, the prepared CMNs were found to be nonphagocytic, representing around 1.13% of phosphatidylserine receptors on healthy cells, which allows the possibility of their use as stealth nanoparticles for drug delivery. Furthermore, CMNs exhibit higher drug-loading efficiency, excellent cytocompatibility, and enhanced cellular internalization capabilities. Moreover, we show that the delivery of rosuvastatin-loaded CMNs in the in vitro MASLD model efficiently reduced hepatocyte lipid accumulation, including total cholesterol (26.8 ± 3.1%) and triglycerides (11.8 ± 0.8%), compared to the negative control. Taken together, the nanoengineered biomimetic CMNs enhance the drug's bioactivity in hepatic cells, establishing a foundation for further investigation of this drug delivery system in treating MASLD.

2.
Small ; : e2403537, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004860

ABSTRACT

Rechargeable batteries have transformed human lives and modern industry, ushering in new technological advancements such as mobile consumer electronics and electric vehicles. However, to fulfill escalating demands, it is crucial to address several critical issues including energy density, production cost, cycle life and durability, temperature sensitivity, and safety concerns is imperative. Recent research has shed light on the intricate relationship between these challenges and the chemical processes occurring at the electrode-electrolyte interface. Consequently, a novel approach has emerged, utilizing self-assembled molecular layers (SAMLs) of meticulously designed molecules as nanomaterials for interface engineering. This research provides a comprehensive overview of recent studies underscoring the significant roles played by SAML in rechargeable battery applications. It discusses the mechanisms and advantageous features arising from the incorporation of SAML. Moreover, it delineates the remaining challenges in SAML-based rechargeable battery research and technology, while also outlining future perspectives.

3.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999122

ABSTRACT

Adsorption of nanoparticles on a spherical colloidal particle is studied by molecular dynamics simulations. We consider a generic model for a mixture of nanoparticles with energetically favored self-assembly into alternating layers of the two components. When both components are attracted to the colloidal particle, the adsorbed nanoparticles self-assemble either into alternating parallel tori and clusters at the two poles of the colloidal particle, or into alternating spirals wrapped around the spherical surface. The long-lived metastable states obtained in simulations follow from the spherical shape of the adsorbing surface and the requirement that the neighboring chains of the nanoparticles are composed of different components. A geometrical construction leading to all such patterns is presented. When the second component particles are repelled from the colloidal particle and the attraction of the first component is strong, the attracted particles form a monolayer at the surface of the colloidal particle that screens the repulsion of the second component. The subsequent adsorbed alternating spherical layers of the two components form together a thick shell. This structure leads to the adsorption that is larger than in the case of the same attraction of the two components to the colloidal particle.

4.
BMC Gastroenterol ; 24(1): 223, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992591

ABSTRACT

Ulcerative colitis (UC) is a persistent inflammatory condition that specifically targets the colon and rectum. Existing therapies fail to adequately address the clinical requirements of people suffering from this ailment. Despite the acknowledged potential of nanomedicines in the field of anti-inflammatory treatment, their widespread use in clinical settings is impeded by their expensive nature and the uncertainty surrounding their safety profiles. This study illustrates that two naturally occurring phytochemicals, Costunolide (COS) and Glycyrrhizic acid (GA), form carrier-free, multifunctional spherical nanoparticles (NPs) through noncovalent interactions, such as π-π stacking and hydrogen bonding. The COS-GA NPs displayed a synergistic anti-inflammatory effect, providing much more evidently improved therapeutic benefits for dextran sodium sulfate (DSS)-induced UC mice due to more effective reduction in inflammation and oxidative stress than did equal dosages of COS or GA used alone. In addition, COS-GA NPs have biocompatibility and biosafety properties unique to them. This study will serve as affirmation of the potential of COS-GA NPs as innovative natural anti-inflammatory and antioxidant activities and also such agents as drug discovery in UC, leading possibly to better outcomes in people living with this disabling condition.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Dextran Sulfate , Glycyrrhizic Acid , Nanoparticles , Colitis, Ulcerative/drug therapy , Animals , Glycyrrhizic Acid/therapeutic use , Glycyrrhizic Acid/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice , Oxidative Stress/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Male , Drug Synergism , Sesquiterpenes
5.
J Colloid Interface Sci ; 675: 646-659, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38991279

ABSTRACT

HYPOTHESIS: Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability. EXPERIMENTS: ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized. To observe the shell-core structure and oil-water interface details of SO/FO/CLO PKEGs by confocal laser scanning microscope and cryo-scanning electron microscope. Accelerated oxidation of FO was performed to assess the protective effect of PKEG on lipids. FINDINGS: The SO, FO, and CLO PKEGs stabilized by 2 % ZT NPs, with oil fraction (φ = 0.5-0.6), were obtained. PKEGs show high viscoelasticity, clear shell-core structure spatial network structure, and ideal storage stability. Under accelerated oxidation, the degree of oxidative rancidity of FO PKEG was obviously lower than that of free FO. Overall, this work opens up new possibilities for using natural PKEG to prevent oxidative deterioration and prolong the shelf-life of PUFA-rich oils.

6.
Chemistry ; : e202401885, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977428

ABSTRACT

The understanding of supramolecular chirality in self-assembled molecular networks (SAMNs) on surfaces generates a lot of interest because of its relation to the production of chiral sensors, reactors, and catalysts. We herein report the adsorption of a prochiral solvent molecule in porous SAMNs formed by a chiral dehydrobenzo[12]annulene (cDBA) derivative. Through the prochirality recognition of a solvent molecule, the supramolecular chirality of the SAMN is switched: the cDBA exclusively forms a counter-clockwise pore through co-adsorption of the solvent molecule in prochiral 1,2,4-trichlorobenzene, while in 1-phenyloctane it produces the opposite chiral, clockwise pore. The prochirality recognition of the solvent molecule in the chiral SAMN pores is attributed to the adaptable conformational changes of the chiral chains of the cDBA molecule.

7.
Adv Mater ; : e2406671, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988151

ABSTRACT

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

8.
Int J Biol Macromol ; 275(Pt 2): 133595, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960253

ABSTRACT

Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.

9.
Nano Lett ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037851

ABSTRACT

The performance of lead sulfide (PbS) quantum-dot-based up-conversion photodetectors is greatly limited owing to a large potential barrier at the interconnection layer between the photodetecting (PD) unit and light-emitting (LED) unit. Thus, very high driving voltage is required, rendering high energy consumption and poor working stability. By introducing azetidinium iodide (AzI) at the PD/LED interface, zero-barrier interconnection was achieved for the PbS-based infrared up-conversion photodetectors. The turn-on voltage under infrared illumination was greatly reduced to 1.2 V and a high photon-to-photon conversion efficiency (ηpp) of ∼3% was obtained at 3 V, showing a 10-fold enhancement compared to those previously reported devices. The mechanism for the regulation of interface energy level alignments was related to the self-assembly of the AzI dipole molecules, resulting from the van der Waals force between the S atoms in the ligands of PbS and the protonated H atoms around N atoms in AzI.

10.
Bioact Mater ; 40: 503-523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39040568

ABSTRACT

Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.

11.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3212-3219, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041082

ABSTRACT

In this experiment, the micro-precipitation method was used to prepare self-assembled nanoparticles of Herpetospermum caudigerum Wall.(MP-SAN). The process was optimized using average particle size and polydispersity index(PDI)as evaluation indexes. The mean particle size, PDI,zeta potential, and microstructure of MP-SAN were characterized. The intestinal absorption mechanism of dehydrodiconiferyl alcohol(DA)and herpetrione(Her)in MP-SAN was investigated through single-pass intestinal perfusion in rats. The optimized process parameters for producing MP-SAN were a stirring speed of 800 r·min~(-1),stirring time of 5 min, and rotary evaporation temperature of 40℃. The resulting MP-SAN exhibited a spherical-like structure and uniform morphology, with a mean particle size of(267.63±13.27) nm, a PDI of 0.062 0±0.043 9,and a zeta potential of(-46.18±3.66) mV. The absorption rate constant(K_a)and apparent permeability coefficient(P_(app))of DA in the ileal segment were significantly higher than those in the jejunal segment(P<0.05). However, there was no significant difference in the absorption of Her between the ileal and jejunal segments. Intestinal absorption parameters of DA and Her tended to increase with increasing drug concentration. Specifically, the K_a and P_(app) of DA in MP-SAN in the high-concentration group were significantly higher than those in the low-concentration group(P<0.01). The addition of verapamil, a P-glycoprotein inhibitor, did not significantly affect the intestinal absorption of DA and Her. However, the absorption of both DA and Her in MP-SAN was significantly increased by the addition of indomethacin(P<0.05),suggesting that DA and Her may be substrates for multidrug resistance-associated protein 2.


Subject(s)
Intestinal Absorption , Nanoparticles , Particle Size , Animals , Nanoparticles/chemistry , Rats , Male , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Cucurbitaceae/chemistry
12.
Sci Rep ; 14(1): 14998, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951136

ABSTRACT

Herein, additive manufacturing, which is extremely promising in different sectors, has been adopted in the electrical energy storage field to fabricate efficient materials for supercapacitor applications. In particular, Al2O3-, steel-, and Cu-based microparticles have been used for the realization of 3D self-assembling materials covered with reduced graphene oxide to be processed through additive manufacturing. Functionalization of the particles with amino groups and a subsequent "self-assembly" step with graphene oxide, which was contextually partially reduced to rGO, was carried out. To further improve the electrical conductivity and AM processability, the composites were coated with a polyaniline-dodecylbenzene sulfonic acid complex and further blended with PLA. Afterward, they were extruded in the form of filaments, printed through the fused deposition modeling technique, and assembled into symmetrical solid-state devices. Electrochemical tests showed a maximum mass capacitance of 163 F/g, a maximum energy density of 15 Wh/Kg at 10 A/g, as well as good durability (85% capacitance retention within 5000 cycles) proving the effectiveness of the preparation and the efficiency of the as-manufactured composites.

13.
Angew Chem Int Ed Engl ; : e202407228, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975669

ABSTRACT

Three functionalized thienopyrazines (TPs), TP-MN (1), TP-CA (2), and TPT-MN (3) were designed and synthesized as self-assembled monolayers (SAMs) deposited on the NiOx film for tin-perovskite solar cells (TPSCs). Thermal, optical, electrochemical, morphological, crystallinity, hole mobility, and charge recombination properties, as well as DFT-derived energy levels with electrostatic surface potential mapping of these SAMs, have been thoroughly investigated and discussed. The structure of the TP-MN (1) single crystal was successfully grown and analyzed to support the uniform SAM produced on the ITO/NiOx substrate. When we used NiOx as HTM in TPSC, the device showed poor performance. To improve the efficiency of TPSC, we utilized a combination of new organic SAMs with NiOx HTM, the TPSC device exhibited the highest PCE of 7.7% for TP-MN (1). Hence, the designed NiOx/TP-MN (1) acts as a new model system for the development of efficient SAM-based TPSC. To the best of our knowledge, the combination of organic SAMs with anchoring CN/CN or CN/COOH groups, and NiOx HTM for TPSC has never been reported elsewhere. The TPSC device based on the NiOx/TP-MN bilayer exhibits great enduring stability for performance, retaining ~80% of its original value for shelf storage over 4000 h.

14.
ACS Appl Mater Interfaces ; 16(26): 33838-33845, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961574

ABSTRACT

Perovskite photodetectors, devices that convert light to electricity, require good extraction and low noise levels to maximize the signal-to-noise ratio. Self-assembling monolayers (SAMs) have been shown to be effective hole transport materials thanks to their atomic layer thickness, transparency, and energetic alignment with the valence band of the perovskite. While efforts are being made to reduce noise levels via the active layer, little has been done to reduce noise via SAM interfacial engineering. Herein, we report hybrid perovskite photodetectors with high detectivity by blending two different SAMs (2-PACz and Me-4PACz). We find that with a 1:1 2-PACz:Me-4PACz ratio (by weight), the devices achieved a low noise of 1 × 10-13 A Hz-1/2, a high responsivity of 0.41 A W-1 at 710 nm, and a specific detectivity of 6.4 × 1011 Jones at 710 nm at -0.5 V, outperforming its two counterparts. In addition to the improved noise levels in these devices, impedance spectroscopy revealed that higher recombination lifetimes of 0.85 µs were achieved for the 1:1 2-PACz:Me-4PACz-based photodetectors, confirming their low defect density.

15.
Nano Lett ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017718

ABSTRACT

Self-assembled protein cages are attractive scaffolds for organizing various proteins of interest (POIs) toward applications in synthetic biology and medical science. However, specifically attaching multiple POIs to a single protein cage remains challenging, resulting in diversity among the functionalized particles. Here, we present the engineering of a self-assembled protein cage, DTMi3ST, capable of independently recruiting two different POIs using SpyCatcher (SC)/SpyTag (ST) and DogCatcher (DC)/DogTag (DT) chemistries, thereby reducing variability between assemblies. Using fluorescent proteins as models, we demonstrate controlled targeting of two different POIs onto DTMi3ST protein cages both in vitro and inside living cells. Furthermore, dual functionalization of the DTMi3ST protein cage with a membrane-targeting peptide and ß-galactosidase resulted in the construction of membrane-bound enzyme assemblies in Escherichia coli, leading to a 69.6% enhancement in substrate utilization across the membrane. This versatile protein cage platform provides dual functional nanotools for biological and biomedical applications.

16.
ACS Nano ; 18(28): 18683-18692, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38973716

ABSTRACT

The interaction of liquid water with hydrophobic surfaces is ubiquitous in life and technology. Yet, the molecular structure of interfacial liquid water on these surfaces is not known. By using a 3D atomic force microscope, we characterize with angstrom resolution the structure of interfacial liquid water on hydrophobic and hydrophilic silica surfaces. The combination of 3D AFM images and molecular dynamics simulations reveals that next to a hydrophobic silica surface, there is a 1.2 nm region characterized by a very low density of water. In contrast, the 3D AFM images obtained of a hydrophilic silica surface reveal the presence of hydration layers next to the surface. The gap observed on hydrophobic silica surfaces is filled with two-to-three layers of straight-chain alkanes. We developed a 2D Ising model that explains the formation of a continuous hydrocarbon layer on hydrophobic silica surfaces.

17.
Chemphyschem ; : e202400626, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024523

ABSTRACT

Self-assembled monolayers (SAMs) are emerging as platform technology for a myriad of applications, yet they still possess varied spatial stability and predictability issues as their properties are heavily dependent on subtle structural features. Reducing entropy within such a system serves as one of many potential solutions to increase order and therefore coherence/precision in measured properties. Here we explore controlled thermal annealing to improve edge disorders in SAMs and significantly reduce data variance. Using both odd- and even-numbered n-alkanethiol SAMs on Au, we observe statistically significant difference in the contact angles between edge and center. Thermal annealing at 40°C significantly narrows differences between edges and centre of the SAM, albeit with significant reduction in the parity dependent odd-even effect. This study provides a pathway to improve SAMs consistency through minimal external perturbation as reflected by the minimization of odd-even effect as SAMs become increasingly ordered.

18.
Article in English | MEDLINE | ID: mdl-39024545

ABSTRACT

Improving hole injection through the surface modification of indium tin oxide (ITO) with self-assembled monolayers (SAMs) is a promising method for modulating the carrier injection in organic light-emitting diodes (OLEDs). However, developing SAMs with the required characteristics remains a daunting challenge. Herein, we functionalize ITO with various phosphonic acid SAMs and evaluate the SAM-modified anodes in terms of their work function (WF), molecular distribution, coverage, and electrical conductivity. We fabricate and characterize green phosphorescent SAM-based OLEDs and compared their performance against devices based on the conventional poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hole-injection layer. We find that the usage of [2-(3,6-diiodo-9H-carbazol-9-yl)ethyl]phosphonic acid (I-2PACz) SAM yields devices with superior performance characteristics, including a maximum luminance of ∼57,300 cd m-2 and external quantum efficiency of up to ∼17%. This improvement is attributed to synergistic factors, including the deep WF of ITO/I-2PACz (5.47 eV), the formation of larger I-2PACz molecular clusters, and the intrinsic I-2PACz dipole, that collectively enhance hole-injection.

19.
Vaccine ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824085

ABSTRACT

The conventional inactivated tetanus toxin plays an instrumental role in preventing tetanus. Nevertheless, the challenges associated with its production process, the potential for adverse reactions, and reduced effectiveness in vulnerable populations such as neonates and the elderly rise the need for a novel tetanus toxin vaccine. Recombinant subunit vaccine offer a viable solution, and the tetanus toxin fragment C (TTFC) is emerging as a promising candidate. In this study, through spontaneous isopeptide bond formation we conjugated the recombinant TTFC to self-assembled mi3 nanoparticle, which derived from an optimized KDPG aldolase, and generated the TTFC-mi3 protein nanoparticle vaccine. We found that TTFC-mi3 is stable, uniform spherical nanoparticles. Comparing with the free TTFC alone, TTFC-mi3 enhances the uptake and subsequent activation of dendric cells (DCs). In addition, a single dose of adjuvant-free TTFC-mi3 elicited a more rapid and potent protective immunity in mice. Moreover, TTFC-mi3 is of favorable safety in vitro and in vivo. Our findings indicate that TTFC-mi3 is a rapid-response, non-aluminum-adjuvanted vaccine against tetanus.

20.
Small ; : e2402857, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934535

ABSTRACT

2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...