Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Toxicol In Vitro ; 99: 105863, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823552

ABSTRACT

Selumetinib is an oral, effective, and selective tyrosine kinase inhibitor targeting mitogen-activated protein kinase 1 and 2 (MEK1/2), which is clinically active in multiple tumor types, such as neurofibromatosis type 1 (NF1), melanoma, gliomas and non-small cell lung cancer (NSCLC). The purpose of this article was to assess the effects of selumetinib on the activities of twelve human UDP-glucosyltransferases (UGTs) including UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, and its potential for inducing clinical drug-drug interactions (DDIs). The results demonstrated that selumetinib potently inhibited the activity of UGT2B7 through the mechanism of mixed inhibition with the inhibition constant value of 5.79 ± 0.65 µM. Furthermore, the plasma concentration of UGT2B7 substrate as the co-administered drug was predicted to be increased by at least 84 % when patients took selumetinib 75 mg twice daily, suggesting a high potential to induce clinical DDIs. Selumetinib exhibited weak inhibitory effects on other human UGTs and was unlikely to trigger off UGTs-mediated DDIs except for UGT2B7. Therefore, the combination of selumetinib with the substrate drug of UGT2B7 requires additional attention to avoid adverse events in clinical treatment.

2.
Int Immunopharmacol ; 137: 112487, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38889513

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most malignant tumor in the world. 5-fluorouracil (5­FU) -based chemotherapy is the first-line chemotherapy scheme for CRC, whereas acquired drug resistance poses a huge obstacle to curing CRC patients and the mechanism is still obscure. Therefore, identification of genes associated with 5­FU chemotherapy and seeking second-line treatment are necessary means to improve survival and prognosis of patients with CRC. METHODS: The Cancer Therapeutics Response Portal (CTRP) database and Genomics of Drug Sensitivity in Cancer (GDSC) database were used to identify CRC-related genes and potential second-line therapies for 5-FU-resistant CRC. The single-cell RNA sequencing data for CRC tissues were obtained from a GEO dataset. The relationship between ITGA2 and 5-FU-resistant was investigated in vitro and in vivo models. RESULTS: ACOX1 and ITGA2 were identified as risk biomarkers associated with 5-FU-resistance. We developed a risk signature, consisting of ACOX1 and ITGA2, that was able to distinguish well between 5-FU-resistance and 5-FU-sensitive. The single-cell sequencing data showed that ITGA2 was mainly enriched in malignant cells. ITGA2 was negatively correlated with IC50 values of most small molecule inhibitors, of which selumetinib had the highest negative correlation. Finally, knocking down ITGA2 can make 5-FU-resistant CRC cells sensitive to 5-FU and combining with selumetinib can improve the therapeutic effect of 5-FU resistant cells. CONCLUSION: In summary, our findings demonstrated the critical role of ITGA2 in enhancing chemotherapy resistance in CRC cells and suggested that selumetinib can restore the sensitivity of chemotherapy-resistant CRC cells to 5-FU by inhibiting ITGA2 expression.


Subject(s)
Benzimidazoles , Colorectal Neoplasms , Drug Resistance, Neoplasm , Fluorouracil , Integrin alpha2 , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Fluorouracil/therapeutic use , Fluorouracil/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Integrin alpha2/genetics , Integrin alpha2/metabolism , Animals , Benzimidazoles/therapeutic use , Benzimidazoles/pharmacology , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
3.
Acta Neuropathol Commun ; 12(1): 102, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38907342

ABSTRACT

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.


Subject(s)
Benzimidazoles , Extracellular Matrix , Schwann Cells , Signal Transduction , Skin Neoplasms , Humans , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Benzimidazoles/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/genetics , Signal Transduction/drug effects , Neurofibroma/genetics , Neurofibroma/drug therapy , Neurofibroma/metabolism , Neurofibroma/pathology , Female , Male , RNA-Seq , Middle Aged , Adult , Neurofibromatosis 1/genetics , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Transcriptome/drug effects
4.
Life (Basel) ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38929714

ABSTRACT

The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.

5.
Future Oncol ; 20(14): 877-890, 2024 May.
Article in English | MEDLINE | ID: mdl-38869947

ABSTRACT

WHAT IS THIS SUMMARY ABOUT?: This summary describes a publication about a study called SPRINT. The SPRINT study included 50 children with neurofibromatosis type 1 (NF1) and plexiform neurofibroma (PN) that could not be removed with surgery. PNs are tumors that grow along nerves and can cause various problems for children, such as pain, changes to appearance, and muscle weakness. In SPRINT, the study team wanted to learn whether a medication called selumetinib was able to shrink the PN caused by NF1 (also known as NF1-related PN), and if shrinking PNs helped relieve children of the problems caused by it. To assess how selumetinib might help, children had scans to measure the size of their PN, completed questionnaires, and had a variety of other tests done by their doctor. Their caregivers also completed questionnaires about their child. The children took selumetinib capsules twice a day on an empty stomach. WHAT WERE THE RESULTS?: The results showed that selumetinib was able to shrink the PN for most children (68%). The results also showed that the problems caused by the children's PNs mostly improved while on selumetinib treatment. SPRINT also showed that the side effects of selumetinib were mainly mild and could be managed by doctors. WHAT DO THE RESULTS MEAN?: Before SPRINT, there were not many treatment options for children with NF1 and PN as there were no medications that had been shown to shrink PN, and surgery was not always possible. SPRINT showed that this medication shrinks most PNs and could help children with NF1 and PN. In April 2020, selumetinib was approved by the US Food and Drug Administration (FDA) because of the results of SPRINT. Selumetinib was the first and, as of February 2024, is the only medicine that can be prescribed by doctors to help children with NF1-related PN. Clinical Trial Registration: NCT01362803 (SPRINT) (ClinicalTrials.gov).


Subject(s)
Benzimidazoles , Neurofibroma, Plexiform , Neurofibromatosis 1 , Adolescent , Child , Child, Preschool , Female , Humans , Male , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Neurofibroma, Plexiform/drug therapy , Neurofibroma, Plexiform/pathology , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Treatment Outcome
6.
Neurooncol Adv ; 6(1): vdae036, 2024.
Article in English | MEDLINE | ID: mdl-38721358

ABSTRACT

Background: Selumetinib is approved for the treatment of pediatric patients with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PN) in multiple countries, including the USA (≥ 2 years). Until recently, individuals had to take selumetinib twice daily (BID) in a fasted state. This study evaluated the effect of a low-fat meal on selumetinib PK parameters and gastrointestinal (GI) tolerability in adolescent participants with NF1-PN. Methods: Eligible participants aged ≥ 12 to < 18 years took 25 mg/m2 selumetinib BID with a low-fat meal (T1) for 28 days, followed by a 7-day washout, and then administration in a fasted state (T2) for another 28 days. Primary objectives were to evaluate the effect of a low-fat meal on AUC0-12,ss and GI tolerability after multiple selumetinib doses in T1 versus T2. Key secondary objectives were additional PK parameters and adverse events (AEs). Results: At primary data cut-off, all 24 participants completed T1, and 23 participants completed T2. There were no significant differences in AUC0-12,ss between T1 and T2. In T1 and T2, 29.2% and 33.3% participants, respectively, reported ≥ 1 GI AE. No GI AEs Grade ≥ 3, or serious AEs, or GI AEs resulting in treatment interruptions, discontinuation, or dose reductions were reported in T1 and T2. Conclusions: Dosing selumetinib with a low-fat meal had no clinically relevant impact on selumetinib AUC0-12,ss nor GI tolerability in adolescents with NF1-PN. Trial registration ClinicalTrialsgov ID: NCT05101148.

7.
J Neurooncol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739187

ABSTRACT

PURPOSE: Selumetinib is an FDA-approved targeted therapy for plexiform neurofibromas in neurofibromatosis type 1(NF1) with durable response rates seen in most, but not all patients. In this proof-of-concept study, we demonstrate single-cell RNA sequencing(scRNAseq) as a technique for quantifying drug response to selumetinib at the single cell level. METHODS: scRNAseq data from neurofibroma biopsies was obtained from a public genomics repository. Schwann cell populations were identified through standard clustering techniques and single-cell selumetinib sensitivity was quantified on a scale of 0(resistant) to 1(sensitive) based on the expression pattern of a 500 gene selumetinib sensitivity signature from the BeyondCell sensitivity library. RESULTS: A total of seven plexiform neurofibromas were included in our final analysis. The median absolute number of Schwann cells across samples was 658 cells (IQR: 1,029 cells, Q1-Q3: 135 cells to 1,163 cells). There was a statistically significant difference in selumetinib sensitivity profiles across samples (p < 0.001). The tumor with the highest median selumetinib sensitivity score had a median selumetinib sensitivity score of 0.64(IQR: 0.14, Q1-Q3: 0.59-0.70, n = 112 cells) and the tumor with the lowest median selumetinib sensitivity score had a median score of 0.37 (IQR: 0.21, Q1-Q3: 0.27-0.48, n = 1,034 cells). CONCLUSIONS: scRNAseq of plexiform neurofibroma biopsies reveals differential susceptibilities to selumetinib on a single cell level. These findings may explain the partial responses seen in clinical trials of selumetinib for NF1 and demonstrate the value of collecting scRNAseq data for future NF1 trials.

8.
J Mol Recognit ; 37(4): e3084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38596890

ABSTRACT

The binding of drugs to plasma proteins determines its fate within the physiological system, hence profound understanding of its interaction within the bloodstream is important to understand its pharmacodynamics and pharmacokinetics and thereby its therapeutic potential. In this regard, our work delineates the mechanism of interaction of Selumetinib (SEL), a potent anti-cancer drug showing excellent effect against multiple solid tumors, with plasma protein bovine serum albumin (BSA), using methods such as absorption, steady-state fluorescence, time-resolved, fluorescence resonance energy transfer, Fourier transform infrared spectra (FTIR), circular dichroism (CD), synchronous and 3D-fluorescence, salt fluorescence, molecular docking and molecular dynamic simulations. The BSA fluorescence intensity was quenched with increasing concentration of SEL which indicates interactions of SEL with BSA. Stern-Volmer quenching analysis and lifetime studies indicate the involvement of dynamic quenching. However, some contributions from the static quenching mechanism could not be ruled out unambiguously. The association constant was found to be 5.34 × 105 M-1 and it has a single binding site. The Förster distance (r) indicated probable energy transmission between the BSA and SEL. The positive entropy changes and enthalpy change indicate that the main interacting forces are hydrophobic forces, also evidenced by the results of molecular modeling studies. Conformation change in protein framework was revealed from FTIR, synchronous and 3D fluorescence and CD studies. Competitive binding experiments as well as docking studies suggest that SEL attaches itself to site I (subdomain IIA) of BSA where warfarin binds. Molecular dynamic simulations indicate the stability of the SEL-BSA complex. The association energy between BSA and SEL is affected in the presence of different metals differently.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Circular Dichroism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Cattle , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites , Spectroscopy, Fourier Transform Infrared , Fluorescence Resonance Energy Transfer , Thermodynamics , Spectrometry, Fluorescence
9.
Clin Pharmacol Drug Dev ; 13(7): 770-781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38591154

ABSTRACT

Selumetinib is clinically used for pediatric patients with neurofibromatosis type 1 and symptomatic, inoperable plexiform neurofibromas. Until recently, selumetinib had to be taken twice daily, after 2 hours of fasting and followed by 1 hour of fasting, which could be inconvenient. This population analysis evaluated the effect of low- and high-fat meals on the pharmacokinetic (PK) parameters of selumetinib and its active metabolite N-desmethyl selumetinib. The dataset comprised 511 subjects from 15 clinical trials who received ≥1 dose of selumetinib and provided ≥1 measurable postdose concentration of selumetinib and N-desmethyl selumetinib. A 2-compartment model with sequential 0- and 1st-order delayed absorption and 1st-order elimination adequately described selumetinib PK characteristics. A 1-compartment model reasonably described N-desmethyl selumetinib PK characteristics over time simultaneously with selumetinib. Selumetinib geometric mean area under the concentration-time curve ratio (1-sided 90% confidence interval [CI] lower bound) was 76.9% (73.3%) with a low-fat meal and 79.3% (76.3%) with a high-fat meal versus fasting. The lower bound of the 1-sided 90% CI demonstrated a difference of <30% between fed and fasted states. Considering the flat exposure-response relationship within the dose range (20-30 mg/m2), the observed range of exposure, and the variability in the SPRINT trial, this was not considered clinically relevant.


Subject(s)
Benzimidazoles , Food-Drug Interactions , Healthy Volunteers , Neurofibroma, Plexiform , Neurofibromatosis 1 , Humans , Male , Neurofibromatosis 1/drug therapy , Female , Adult , Benzimidazoles/pharmacokinetics , Benzimidazoles/administration & dosage , Young Adult , Adolescent , Neurofibroma, Plexiform/drug therapy , Child , Middle Aged , Models, Biological , Fasting/metabolism , Area Under Curve , Aged , Child, Preschool
10.
Invest New Drugs ; 42(3): 241-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483782

ABSTRACT

MEK inhibitors have immunomodulatory activity and potential for synergistic activity when combined with PD-1 inhibitors. We evaluated selumetinib (inhibitor of MEK1/2) plus pembrolizumab (anti‒PD-1 antibody) in patients with advanced/metastatic solid tumors. In this phase 1b study, adults with previously treated advanced/metastatic solid tumors received pembrolizumab 200 mg intravenously every 3 weeks plus selumetinib on days 1‒14 per 3-week cycle (2 weeks on/1 week off); selumetinib dosing began at 50 mg orally twice daily with escalation in 25 mg increments for ≤ 35 cycles. Primary endpoints were dose-limiting toxicities (DLTs), adverse events (AEs), and treatment discontinuations due to AEs. Thirty-two patients were enrolled. Dose escalation was completed up to selumetinib 125 mg twice daily. The target DLT rate of 30% was not reached at any dose level. In the selumetinib 100 mg group, 2/11 patients (18.2%) experienced DLTs (n = 1 grade 3 diarrhea, n = 1 grade 3 fatigue). In the selumetinib 125 mg group, 3/14 (21.4%) experienced DLTs (n = 1 grade 2 retinal detachment, n = 1 grade 3 retinopathy, n = 1 grade 3 stomatitis). Dose-related changes in pharmacokinetic exposures were observed for selumetinib and N-desmethyl selumetinib up to 100 mg (saturation at 125 mg). Two patients achieved partial responses (1 each with selumetinib 75 mg and 125 mg) for an objective response rate of 6%. The study was stopped early because of insufficient efficacy. Although the target DLT rate was not reached at any dose level and no new safety signals were identified, selumetinib plus pembrolizumab had limited antitumor activity in this population. Trial registration: ClinicalTrials.gov , NCT03833427.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Neoplasms , Humans , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Female , Male , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Aged , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Adult , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Maximum Tolerated Dose , Dose-Response Relationship, Drug , Aged, 80 and over
11.
J Neurol ; 271(5): 2379-2389, 2024 May.
Article in English | MEDLINE | ID: mdl-38502338

ABSTRACT

BACKGROUND: The approval of selumetinib in patients with neurofibromatosis type 1(NF1) and inoperable plexiform neurofibromas (PN) has reshaped the landscape of clinical management of the disease, and further comprehensive evaluation of the drug's efficacy and safety is needed. METHODS: Original articles reporting on the efficacy and safety of elumetinib in patients with NF1 were comprehensively searched in the Pubmed database, Embase database, Cochrane Library, and Web of Science database and screened for inclusion of studies that met the criteria. We pooled the objective response rate (ORR), disease control rate (DCR), disease progression rate (DPR), and the rate of improvement in PN-related complications using meta-analysis. The incidence of drug-related adverse events was also statistically analyzed. RESULTS: This study included 10 clinical trials involving 268 patients. The pooled ORR was 68.0% (95% CI 58.0-77.3%), the DCR was 96.8% (95% CI 90.8-99.7%) and the DPR was only 1.4% (95% CI 0-4.3%). The pooled improvement rate was 75.3% (95% CI 56.2-90.9%) for pain and 77.8% (95% CI 63.1-92.5%) for motor disorders. Most adverse events were mild, with the most common being gastrointestinal reactions (diarrhea: 62.5%; vomiting: 54.5%). CONCLUSION: Our study demonstrates that selumetinib is effective in patients with NF1 and PN, significantly improving the serious complications associated with PN as well as having tolerable toxicities. Our findings help to increase clinicians' confidence in applying selumetinib and promote the clinical adoption and benefit of the new drug.


Subject(s)
Benzimidazoles , Neurofibroma, Plexiform , Neurofibromatosis 1 , Humans , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Benzimidazoles/adverse effects , Benzimidazoles/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use
12.
Eur J Cancer ; 202: 114009, 2024 May.
Article in English | MEDLINE | ID: mdl-38547774

ABSTRACT

AIMS: The MAPK pathway is constitutively activated in uveal melanoma (UM). Selumetinib (AZD6244, ARRY-142886), a MEK inhibitor, has shown limited activity as monotherapy in metastatic UM. Pre-clinical studies support synergistic cytotoxic activity for MEK inhibitors combined with taxanes, and here we sought to assess the clinical efficacy of combining selumetinib and paclitaxel. PATIENTS AND METHODS: Seventy-seven patients with metastatic UM who had not received prior chemotherapy were randomised to selumetinib alone, or combined with paclitaxel with or without interruption in selumetinib two days before paclitaxel. The primary endpoint was progression free survival (PFS). After amendment, the combination arms were combined for analysis and the sample size adjusted to detect a hazard ratio (HR): 0.55, 80% power at 1-sided 5% significance level. RESULTS: The median PFS in the combination arms was 4.8 months (95% CI: 3.8 - 5.6) compared with 3.4 months (2.0 - 3.9) in the selumetinib arm (HR 0.62 [90% CI 0.41 - 0.92], 1-sided p-value = 0.022). ORR was 14% and 4% in the combination and monotherapy arms respectively. Median OS was 9 months for the combination and was not significantly different from selumetinib alone (10 months) with HR of 0.98 [90% CI 0.58 - 1.66], 1-sided p-value = 0.469. Toxicity was in keeping with the known profiles of the agents involved. CONCLUSIONS: SelPac met its primary endpoint, demonstrating an improvement in PFS for combination selumetinib and paclitaxel. No improvement in OS was observed, and the modest improvement in PFS is not practice changing.


Subject(s)
Benzimidazoles , Melanoma , Paclitaxel , Uveal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases , Paclitaxel/adverse effects , Paclitaxel/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use
13.
J Clin Med ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542016

ABSTRACT

Background: Plexiform neurofibromas (pNFs) are benign neoplasms, primarily originating from Schwann cells, posing challenges in patients with type 1 neurofibromatosis (NF1) due to pain, disfigurement, compression of vital structures and potential for malignancy. Selumetinib, a MEK1/2 inhibitor, has shown promising results in treating inoperable pNFs, with clinical trials demonstrating tumor volume reduction and improved patient-reported outcomes. Despite its efficacy, dermatologic toxicities may impact the quality of life and treatment adherence. Evaluating the frequency and spectrum of such effects is crucial for effective management. Methods: In a four-year retrospective and prospective study, pediatric NF1 patients with symptomatic, inoperable plexiform neurofibromas (pNFs) were treated with selumetinib. Eligibility criteria included significant morbidity, pNF size exceeding 3 cm or surgical inoperability, and performance status >70%. Hematological, liver, lung and cardiac assessments established baseline health. Selumetinib, orally administered at 25 mg/m2 twice, was administered for two years unless a response warranting extension occurred. Cutaneous AEs were documented and graded by severity according to CTCAE v5.0, with evaluations every three to six months. The impact on symptoms and pNF size was systematically recorded, and biopsies characterized histopathological features in those patients requiring surgery. Results: Twenty patients were enrolled, with an average age at therapy initiation of 11.6 years. Cutaneous side effects were common, with all patients experiencing at least one and a median of two per patient. Xerosis, paronychia and acneiform rash were prevalent. Notably, pre-pubertal individuals were more susceptible to xerosis. Acneiform rash had a higher incidence in older patients and those with skin phototypes II and III. Successful management involved tailored approaches, such as clindamycin for acneiform rash and topical agents for paronychia. Hair abnormalities, including color changes and thinning, occurred, with female patients at higher risk for the latter. Paronychia presented challenges, necessitating various interventions, including surgical approaches. AEs led to treatment suspension in 20% of patients, with tumor rebound observed in 75%. Conclusions: According to our experience, successful management of selumetinib-induced cutaneous AEs requires tailored strategies including surgery. AEs might indirectly determine pNF regrowth due to therapy suspension. We thus emphasize the pivotal role of addressing cutaneous reactions for effective selumetinib management in pediatric patients.

14.
Front Pharmacol ; 15: 1331648, 2024.
Article in English | MEDLINE | ID: mdl-38318136

ABSTRACT

Background: Docetaxel remains the standard treatment for metastatic castration-resistant prostate cancer (mCRPC). However, resistance frequently emerges as a result of hyperactivation of the PI3K/AKT and the MEK/ERK pathways. Therefore, the inhibition of these pathways presents a potential therapeutic approach. In this study, we evaluated the efficacy of simultaneous inhibition of the PI3K/AKT and MEK/ERK pathways in docetaxel-resistant mCRPC, both in vitro and in vivo. Methods: Docetaxel-sensitive and docetaxel-resistant mCRPC cells were treated with selumetinib (MEK1/2 inhibitor), AZD8186 (PI3Kß/δ inhibitor) and capivasertib (pan-AKT inhibitor) alone and in combination. Efficacy and toxicity of selumetinib+AZD8186 were tested in docetaxel-resistant xenograft mice. CRISPR-Cas9 generated a PTEN-knockdown docetaxel-resistant cell model. Changes in phosphorylation of AKT, ERK and downstream targets were analyzed by Western blot. Antiapoptotic adaptations after treatments were detected by dynamic BH3 profiling. Results: PI3K/AKT and MEK/ERK pathways were hyperactivated in PTEN-wild-type (wt) docetaxel-resistant cells. Selumetinib+AZD8186 decreased cell proliferation and increased apoptosis in PTEN-wt docetaxel-resistant cells. This observation was further confirmed in vivo, where docetaxel-resistant xenograft mice treated with selumetinib+AZD8186 exhibited reduced tumor growth without additional toxicity. Conclusion: Our findings on the activity of selumetinib+AZD8186 in PTEN-wt cells and in docetaxel-resistant xenograft mice provide an excellent rationale for a novel therapeutic strategy for PTEN-wt mCRPC patients resistant to docetaxel, in whom, unlike PTEN-loss patients, a clinical benefit of treatment with single-agent PI3K and AKT inhibitors has not been demonstrated. A phase I-II trial of this promising combination is warranted.

15.
Biomed Chromatogr ; 38(1): e5761, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37920143

ABSTRACT

Selumetinib (SELU) was recently approved by the US Food and Drug Administration (US FDA) in 2020. However, the degradation impurities of SELU have not been characterized or identified to date. The mechanism for impurity formation and the degradation behavior have not been previously studied. This study aims to elucidate the prototypical degradation mechanism of SELU. Furthermore, the degradation impurities have been identified using LC-quadrupole-time-of-flight tandem mass spectrometry and are reported in this article for the first time. In addition, a stability-indicating analytical method (SIAM) has been developed for this drug. Forced degradation studies revealed the degradation of SELU under various stress conditions, including hydrolytic stress (acid and base), oxidative stress, and photolytic stress (ultraviolet and visible). Three degradation impurities were identified. This article presents the first validated SIAM, capable of accurately quantifying SELU in the presence of its degradation impurities. Furthermore, we have proposed the degradation pathway for SELU and its degradation impurities, a first in the field. The developed SIAM can find applications in process development and quality assurance of SELU in both research laboratories and pharmaceutical industries. Moreover, the identified degradation impurities may serve as impurity standards for quality control testing in pharmaceutical industries.


Subject(s)
Drug Contamination , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drug Stability , Chromatography, Liquid/methods
16.
Mol Ther Methods Clin Dev ; 31: 101156, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38058737

ABSTRACT

We report partial response (PR) to novel therapy with selumetinib in a patient with neurofibromatosis type 2 (NF2). A 25-year-old male presented with bilateral vestibular schwannomas, spinal cord intramedullary ependymomas, cranial and spinal meningiomas, spinal nerve root mixed schwannoma-neurofibromas, and peripheral nerve sheath tumors. He tested negative for germline NF2, SWItch/sucrose non-fermentable-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and leucine zipper-like transcription regulator 1 (LZTR1) mutations. Molecular analysis of a resected cervical spine schwannoma-neurofibroma demonstrated an isolated somatic SMARCB1 mutation. Due to progression of all tumors, he was treated medically with both everolimus (10 mg/day) and selumetinib (25 mg/kg twice a day), but he rapidly transitioned to selumetinib monotherapy due to everolimus toxicity. 3 months of treatment resulted in PR in one spinal ependymoma and stable disease in other tumors. This PR was quantified by the differences in units of intensity in pre- and post-treatment magnetic resonance image. To the best of our knowledge, this is the first reported case for using selumetinib in NF2-associated tumors or ependymomas.

17.
Arch Pharm Res ; 46(11-12): 924-938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38032449

ABSTRACT

Gefitinib, as the first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has achieved great advances in the treatment of non-small cell lung cancer (NSCLC), but drug resistance will inevitably occur. Therefore, exploring the resistance mechanism of gefitinib and developing new combination treatment strategies are of great importance. In our study, the results showed that selumetinib (AZD6244) synergistically inhibited the proliferation of NSCLC with gefitinib. Selumetinib also enhanced gefitinib-induced apoptosis and migration inhibition ability in gefitinib-resistant lung cancer cell lines. Subsequently, the negative regulation between MIG6 and STAT3 was observed and verified through the STRING database and western blotting assays. Sustained activation of STAT3 was significantly downregulated when co-treatment with selumetinib in gefitinib-resistant cells. However, the downregulation of p-STAT3, resulting from the combination of selumetinib and gefitinib was counteracted by the deletion of MIG6, suggesting that selumetinib enhanced gefitinib sensitivity by regulating MIG6/STAT3 in NSCLC. In contrast, p-STAT3 was further inhibited after treatment with gefitinib and selumetinib when MIG6 was overexpressed. Furthermore, the combined administration of selumetinib and gefitinib effectively promoted the sensitivity of lung cancer xenografts to gefitinib in vivo, and the tumor inhibition rate reached 81.49%, while the tumor inhibition rate of the gefitinib monotherapy group was only 31.95%. Overall, MIG6/STAT3 negative regulation plays an important role in the sustained activation of STAT3 and the resistance to EGFR-TKIs. Our study also suggests that EGFR-TKIs combined with MEK1/2 inhibitors, such as selumetinib, may be beneficial to those NSCLC patients who develop a primary or acquired resistance to EGFR-TKIs, providing theoretical support for combining TKIs and selumetinib in clinical cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Gefitinib/pharmacology , Gefitinib/therapeutic use , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Apoptosis , Drug Resistance, Neoplasm , Cell Line, Tumor , Cell Proliferation , STAT3 Transcription Factor/metabolism
18.
Curr Oncol Rep ; 25(12): 1409-1417, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37906356

ABSTRACT

Neurofibromatosis type I (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis represent a diverse group of genetic tumor predisposition syndromes with a shared feature of tumors affecting the peripheral nerve sheaths. PURPOSE OF REVIEW: Many advancements have been made in understanding the biologic underpinnings of these conditions, and in 2016 the first drug was approved by the FDA to treat pediatric symptomatic unresectable plexiform neurofibromas. RECENT FINDINGS: Mek inhibitors have provided a much-needed therapeutic avenue for NF1 patients with unresectable plexiform neurofibromas (PN), both for reduction of tumor bulk and for improvement in symptoms. Selumetinib is the first FDA approved drug for PN, but is only approved for children. Some research suggests that alternative Mek inhibitors and other mixed tyrosine kinase inhibitors may have better efficacy in adults. Vascular endothelial growth factor (VEGF) inhibitor bevacizumab can prolong hearing and delay the need for surgery in NF2 patients with bilateral vestibular schwannomas. This article provides an update regarding considerations and approaches when treating the tumors associated with the neurofibromatoses (NF), including risk and prognosis metrics, clinical trial results, surgical techniques, and radiation therapy recommendations.


Subject(s)
Neurofibroma, Plexiform , Neurofibromatoses , Neurofibromatosis 1 , Peripheral Nervous System Neoplasms , Adult , Humans , Child , Neurofibroma, Plexiform/complications , Neurofibroma, Plexiform/therapy , Vascular Endothelial Growth Factor A , Neurofibromatoses/complications , Neurofibromatoses/therapy , Neurofibromatoses/diagnosis , Neurofibromatosis 1/complications , Neurofibromatosis 1/therapy , Genetic Predisposition to Disease , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases
19.
Exp Biol Med (Maywood) ; 248(7): 656-664, 2023 04.
Article in English | MEDLINE | ID: mdl-37340785

ABSTRACT

Ellagic acid, the marker component of peels of Punica granatum L., is known traditionally to treat traumatic hemorrhage. In this study, the cellular mechanism underlying ellagic acid-induced anti-inflammation was investigated using lipopolysaccharides (LPSs) as a neuroinflammation inducer. Our in vitro data showed that LPS (1 µg/mL) consistently phosphorylated ERK and induced neuroinflammation, such as elevation in tumor necrosis factor-α (TNF-α) and nitric oxide production in treated BV-2 cells. Incubation of ellagic acid significantly inhibited LPS-induced ERK phosphorylation and subsequent neuroinflammation in treated BV-2 cells. Furthermore, our in vivo study of neuroinflammation employed an intranigral infusion of LPS that resulted in a time-dependent elevation in phosphorylated ERK levels in the infused substantia nigra (SN). Oral administration of ellagic acid (100 mg/kg) significantly attenuated LPS-induced ERK phosphorylation. A four-day treatment of ellagic acid did not alter LPS-induced ED-1 elevation but ameliorated LPS-induced reduction in CD206 and arginase-1 (two biomarkers of M2 microglia). A seven-day treatment of ellagic acid abolished LPS-induced increases in heme-oxygenase-1, cyclo-oxygenase 2, and α-synuclein trimer levels (a pathological hallmark) in the infused SN. At the same time, ellagic acid attenuated LPS-induced increases in active caspase 3 and receptor-interacting protein kinase-3 levels (respective biomarkers of apoptosis and necroptosis) as well as reduction in tyrosine hydroxylase-positive cells in the infused SN. In silico analysis showed that ellagic acid binds to the catalytic site of MEK1. Our data suggest that ellagic acid is capable of inhibiting MEK1-ERK signaling and then attenuated LPS-induced neuroinflammation, protein aggregation, and programmed cell deaths. Moreover, M2 microglial polarization is suggested as a novel antineuroinflammatory mechanism in the ellagic acid-induced neuroprotection.


Subject(s)
Lipopolysaccharides , Microglia , Rats , Animals , Lipopolysaccharides/pharmacology , Microglia/metabolism , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Neuroinflammatory Diseases , Biomarkers/metabolism , Brain
20.
Neurooncol Adv ; 5(1): vdad054, 2023.
Article in English | MEDLINE | ID: mdl-37287695

ABSTRACT

Background: Plexiform neurofibromas (PN) are a manifestation of neurofibromatosis type 1 (NF1) that may cause morbidity and impact health-related quality of life (HRQoL). Selumetinib (ARRY-142886, AZD6244) is an orally available, selective, mitogen-activated protein kinase kinase 1/2 inhibitor approved for children with NF1 and symptomatic, inoperable PN in regions including the USA (aged ≥2 years), EU (≥3 years), and Japan (≥3 years). This open-label, single-arm, phase I study evaluated selumetinib in Japanese children with NF1 and symptomatic, inoperable PN. Methods: Eligible patients (aged 3-18 years) received oral selumetinib (25 mg/m2 twice daily) continuously in 28-day cycles in a fasted state. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, efficacy, PN-related morbidities, and HRQoL. Results: Twelve patients (median age 13.3 years) were enrolled, received ≥1 selumetinib dose (data cutoff: cycle 13 day 1) with median follow-up of 11.5 months. All patients had baseline PN-related morbidities, most commonly disfigurement (91.7%) and pain (58.3%). Most frequently reported any-grade adverse events were dermatologic and gastrointestinal. Objective response rate was 33.3%; median duration of response was not reached. Most patients (83.3%) had target PN volume reduction versus baseline. No patients reported worsening of PN-related morbidities. Selumetinib was rapidly absorbed with moderate-to-high inter-patient variability in maximum plasma concentration and area under the concentration-time curve from time 0-6 hours. Conclusions: Consistent with results of the phase II SPRINT trial, 25 mg/m2 selumetinib twice daily was well tolerated with a manageable safety profile in Japanese children with NF1 and symptomatic, inoperable PN.

SELECTION OF CITATIONS
SEARCH DETAIL
...