Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.887
Filter
1.
Open Forum Infect Dis ; 11(7): ofae343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994445

ABSTRACT

Background: Monitoring genotypes of HIV infections in blood donors may provide insights into infection trends in the general population. Methods: HIV RNA was extracted from plasma samples of blood donors confirmed as HIV positive by blood screening nucleic acid and antibody tests. HIV genome target regions were amplified using nested real time-polymerase chain reaction followed by next-generation sequencing. Sequences were compared to those in the Los Alamos National Laboratory (LANL) database. Sequences were also assessed for drug resistance mutations (DRM) using the Stanford HIV DRM Database. Results: From available HIV-positive donations collected between 1 September 2015 and 31 December 2020, 563 of 743 (75.8%) were successfully sequenced; 4 were subtype A, 543 subtype B, 5 subtype C, 1 subtype G, 5 circulating recombinant forms (CRF), and 2 were subtype B and D recombinants. Overall, no significant differences between blood donor and available LANL genotypes were found, and the genotypes of newly acquired versus prevalent HIV infections in donors were similar. The proportion of non-B subtypes and CRF remained a small fraction, with no other subtype or CRF representing more than 1% of the total. DRM were identified in 122 (21.6%) samples with protease inhibitor, nucleoside reverse transcriptase inhibitor and non-nucleoside reverse transcriptase inhibitor DRMs identified in 4.9%, 4.6% and 14.0% of samples, respectively. Conclusions: HIV genetic diversity and DRM in blood donors appear representative of circulating HIV infections in the US general population and may provide more information on infection diversity than sequences reported to LANL, particularly for recently transmitted infections.

2.
J Med Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960580

ABSTRACT

BACKGROUND: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.

3.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965536

ABSTRACT

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Lymphoma, Mantle-Cell , Protein Kinase Inhibitors , Humans , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Animals , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Signal Transduction/drug effects , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice , Biomarkers/metabolism
4.
J Periodontol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007741

ABSTRACT

BACKGROUND: Periodontitis is primarily driven by subgingival biofilm dysbiosis. However, the quantification and impact of this periodontal dysbiosis on other oral microbial niches remain unclear. This study seeks to quantify the dysbiotic changes in tongue and salivary microbiomes resulting from periodontitis by applying a clinically relevant dysbiosis index to an integrated data analysis. METHODS: The National Center for Biotechnology Information (NCBI) database was searched to identify BioProjects with published studies on salivary and tongue microbiomes of healthy and periodontitis subjects. Raw sequence datasets were processed using a standardized bioinformatic pipeline and categorized by their ecological niche and periodontal status. The subgingival microbial dysbiosis index (SMDI), a dysbiosis index originally developed using the subgingival microbiome, was computed at species and genus levels and customized for each niche. Its diagnostic accuracy for periodontitis was evaluated using receiver operating characteristic curves. RESULTS: Four studies, contributing 328 microbiome samples, were included. At both species and genus levels, periodontitis samples had a higher SMDI, but the differences were only significant for subgingival biofilm and saliva (p < 0.001). However, SMDI showed good diagnostic accuracy for periodontitis status for all three niches (area under curve ranging from 0.76 to 0.90, p < 0.05). The dysbiosis index of subgingival biofilm was positively correlated with saliva consistently (p < 0.001) and with the tongue at the genus level (p = 0.036). CONCLUSIONS: While the impact on the tongue microbiome requires further investigation, periodontitis-associated dysbiosis affects the salivary microbiome and is quantifiable using the dysbiosis index. The diagnostic potential of salivary microbial dysbiosis as a convenient periodontal biomarker for assessing periodontal status has potential public health and clinical applications. PLAIN LANGUAGE SUMMARY: Periodontitis, a severe inflammation of the gums which causes bone loss, is a disease caused by an imbalance of good and bad bacteria under the gums. However, it is unclear how this bacterial imbalance in the gums affects the bacterial balance of other distinct parts of the mouth, such as the saliva and tongue. This study uses bacteria datasets of four previously published studies, contributing a total of 328 bacterial samples. The data were processed using a uniform data analysis workflow, and a bacterial score, the subgingival microbial dysbiosis index (SMDI), previously shown to capture periodontitis-associated bacteria imbalance, was calculated separately for samples from under the gums, the saliva, and the tongue. The SMDI was able to distinguish between health and periodontitis within each oral location, and in general, the scores were higher for periodontitis samples, though this difference was significant only for bacteria under the gums and in saliva. Saliva scores were also consistently correlated with bacteria under the gums. This study shows that periodontitis-associated bacterial imbalances are observed in oral locations beyond just under the gums, particularly the saliva. Thus, saliva bacteria may be used as a convenient biomarker for assessing gum disease, allowing for potential public health and clinical applications.

5.
Circulation ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991046

ABSTRACT

BACKGROUND: The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS: Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS: Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS: Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.

6.
Front Pharmacol ; 15: 1374607, 2024.
Article in English | MEDLINE | ID: mdl-38994206

ABSTRACT

Background: Lianhua Qingwen (LHQW) granule, a botanical drug preparation, is frequently utilized as an adjuvant treatment for mycoplasma pneumoniae pneumonia (MPP). Nevertheless, the clinical efficacy and safety of this treatment remain uncertain. Purpose: This study aims to evaluate the efficacy and safety of LHQW granule combined with azithromycin (AZM) in treating MPP in children. Method: To identify all randomized controlled trials (RCTs) of LHQW granule plus AZM, a search was conducted in eight Chinese and English databases (CNKI, Wan Fang, VIP, Sinomed, PubMed, Embase, Web of Science, and Cochrane Library) from their inception until 25 December 2023. Meta-regression and subgroup analysis were employed to investigate heterogeneity. Sensitivity analysis and trial sequential analysis (TSA) were conducted to assess the robustness of the findings. Additionally, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was utilized to evaluate the quality of evidence. Results: A total of 15 RCTs involving 1909 participants were included in this study. The meta-analysis results indicated combination therapy of LHQW granule and AZM is significant different from AZM alone in both efficacy and safety, which are specifically observed in the following outcomes: response rate (RR = 1.17, 95% CI: 1.12 to 1.22, p < 0.01), antipyretic time (MD = -1.32, 95% CI: -1.66 to -0.98, p < 0.01), cough disappearance time (MD = -1.76, 95% CI: -2.47 to -1.05, p < 0.01), pulmonary rale disappearance time (MD = -1.54, 95% CI: -2.06 to -1.02, p < 0.01), c-reactive protein (CRP) (MD = -5.50, 95% CI: -6.92 to -4.07, p < 0.01), procalcitonin (PCT) (MD = -0.31, 95% CI: -0.38 to -0.24, p < 0.01), interleukin 6 (IL-6) (MD = -5.97, 95% CI: -7.39 to -4.54, p<0.01), tumor necrosis factor α (TNF-α) (MD = -5.74, 95% CI: -7.44 to -4.04, p < 0.01), forced vital capacity (FVC) (SMD = 0.48, 95% CI: 0.34 to 0.62, p < 0.01), forced expiratory volume in the first second (FEV1) (SMD = 0.55, 95% CI: 0.44 to 0.67, p < 0.01), FEV1/FVC (SMD = 0.49, 95% CI: 0.32 to 0.67, p < 0.01), CD4+ T lymphocyte (CD4+) (MD = 4.04, 95% CI: 3.09 to 4.98, p < 0.01), CD8+ T lymphocyte (CD8+) (MD = -3.32, 95% CI: 4.27 to 2.38, p < 0.01) and adverse events (RR = 0.65, 95% CI: 0.43 to 0.96, p < 0.01). Conclusion: The combination therapy of LHQW granule and AZM may be a better strategy to treat MPP in children. However, the clinical efficacy and safety of LHQW granule require further validation. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/.

7.
J Med Virol ; 96(7): e29777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949212

ABSTRACT

Hepatitis E virus (HEV) is a prevalent pathogen responsible for acute viral hepatitis, HEV genotypes 3 and 4 infections causing zoonotic infections. Currently, the nucleotide similarity analysis between humans and pigs for HEV genotype 4 is limited. In this study, stool samples from an HEV-infected patient who is a pig farmer and from pigs were collected to obtain the near full-length genome of HEV, phylogenetic trees were constructed for genotyping, and similarity of HEV sequences was analyzed. The results showed that HEV-RNA was detected in the stool samples from the patient and six pigs (6/30, 20.0%). Both HEV subtype in the patient and pigs was 4b. Additionally, similarity analysis showed that the range was 99.875%-99.944% between the patient and pigs at the nucleotide level. Four isolates of amino acid sequences (ORFs 1-3) from pigs were 100% identical to the patient. Phylogenetic tree and similarity analysis of an additional nine HEV sequences isolated from other patients in this region showed that the HEV sequence from the pig farmer had the closest relationship with the pigs from his farm rather than other sources of infection in this region. This study provides indirect evidences for HEV subtype 4b can be transmitted from pigs to humans at the nucleotide level. Further research is needed to explore the characteristics of different HEV subtypes.


Subject(s)
Feces , Genome, Viral , Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , RNA, Viral , Swine Diseases , Animals , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Swine , Hepatitis E/virology , Hepatitis E/veterinary , Hepatitis E/epidemiology , China/epidemiology , Humans , Feces/virology , Swine Diseases/virology , RNA, Viral/genetics , Male , Sequence Analysis, DNA
8.
Longit Life Course Stud ; 15(3): 348-370, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38954424

ABSTRACT

While a vast number of studies confirm the transmission of labour-market disadvantages from one generation to the next, less is known about how parents' interconnected labour-market pathways co-evolve and shape the opportunities and obstacles for their children's future careers. This study uses a multidimensional view of intergenerational transmission by describing the most typical pathways of parents' occupational careers and assesses how these patterns are associated with their children's labour-market outcomes. Drawing on Swedish longitudinal register data, we used multichannel sequence analysis to follow a cohort of people born in 1985 (n = 72,409) and their parents across 26 years. We identified four parental earning models, differentiating between (1) dual earners with high wages, (2) dual earners with low-wage, (3) one-and-a-half-earners and (4) mother as the main breadwinner. Regression analysis shows strong intergenerational transmission among the most advantageous trajectories, with education as a key determinant for young people to become less dependent on family resources. This study stresses the importance of intra-couple perspectives in life course research to understand how inequalities are shaped and preserved across generations.


Subject(s)
Intergenerational Relations , Humans , Female , Sweden/epidemiology , Male , Longitudinal Studies , Adult , Parents/psychology , Employment , Child , Socioeconomic Factors , Adolescent , Parent-Child Relations , Young Adult
9.
STAR Protoc ; 5(3): 103167, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954516

ABSTRACT

Constructing metagenome-assembled genomes (MAGs) from complex metagenomic samples involves a series of bioinformatics operations, each requiring deep bioinformatics knowledge. Here, we present a protocol for constructing MAGs and conducting functional profiling to address biological questions. We describe steps for system configuration, data downloads, read processing, removal of human DNA contamination, metagenomic assembly, and statistical quality assessment of the final assembly. Additionally, we detail procedures for the construction and refinement of MAGs, as well as the functional profiling of MAGs.

10.
J Adolesc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976404

ABSTRACT

INTRODUCTION: Research on heterogeneous pathways in school-to-work transitions (SWT), particularly longitudinal research, has been limited, as have empirical studies examining effective interventions for facilitating multiple SWT pathways among non-engaged youth (NEY), who are generally at risk of being not in education, employment, or training (NEET). METHODS: To develop a typology of SWT pathways, we conducted sequence analysis with longitudinal data from a sample of 630 NEY aged 14-29 (M = 19.78; 63.65% males) in Hong Kong during a 22-month period beginning in September 2020. We also performed multinomial logistic regressions to assess the impact of career and life development (CLD) interventions on SWT outcomes. RESULTS: Our analysis yielded a fivefold typology of SWT pathways: the Employment/Entrepreneurship cluster (31.27%), the Vocational Education and Training cluster (13.49%), the Generic Education cluster (16.83%), the Serious Leisure Development cluster (15.24%), and the long-term NEET cluster (23.17%). NEY in the intervention group receiving CLD services, inspired by the expanded notion of work (ENOW) and youth development and intervention framework (YDIF), demonstrated significantly higher likelihoods of being in the Employment/Entrepreneurship (OR = 34.5, 95% CI [10.53, 105.08]), Generic Education (OR = 3.74, 95% CI [1.81, 7.74]), Vocational Education and Training (OR = 1.55, 95% CI [1.05, 6.26]), and Serious Leisure Development (OR = 1.77, 95% CI [1.04, 4.46]) clusters than the long-term NEET cluster. CONCLUSIONS: Our findings highlight the dynamic, heterogeneous nature of NEY's CLD journeys, including that CLD interventions based on ENOW-YDIF have had a beneficial effect on NEY's multiple SWT pathways.

11.
Vet J ; : 106192, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964602

ABSTRACT

Bufavirus (BuV) was first identified in feces from children with acute diarrhea, and a genetically related Canine bufavirus (CBuV) was first reported in Italy in 2018. In this study, through the investigation of CBuV in 622 anal swabs from dogs with diarrhea symptoms collected from various provinces in northern, central and eastern China during 2018-2022, 14 samples were detected to be positive. And 5 samples were from dogs co-infected with other canine diarrhea related viruses, which consist of CPV-2, CDV and CCoV. The complete genome sequences (4219 nt) of the fourteen strains were amplified and sequenced. Through comparative analysis with 51 reference BuV strains, six strains might recombinate from the CBuV strains (HUN/2012/22, CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA) in Hungary and Italy as the parents, and two genetic recombination events from various parents were predicted to occur on the BUV-422 strain. Combined analyzing the phylogenetic tree and sequence alignment, it was found that these CBuVs are highly conserved in the nonstructural protein NS1, but indeed various amino acid mutation sites in the capsid protein VP2, and even some amino acid sites coincide with putative protein plastic regions and potential epitopes. The BUV-422 and BUV-512 strains show sequential mutation sites identical to the divergent strains of CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA. This study would enrich the molecular data of CBuV in China and provide essential reference for the epidemiological research and vaccine development of CBuV in the future.

12.
Microbiol Spectr ; : e0399023, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904372

ABSTRACT

Infectious bronchitis virus (IBV) is caused by avian coronavirus and poses a global economic threat to the poultry industry. In 2023, a highly pathogenic IBV strain, IBV/CN/GD20230501, was isolated and identified from chickens vaccinated with IBV-M41 in Guangdong, China. This study comprehensively investigated the biological characteristics of the isolated IBV strain, including its genotype, whole genome sequence analysis of its S1 gene, pathogenicity, host immune response, and serum non-targeted metabolomics. Through the analysis of the S1 gene sequence, serum neutralization tests, and comparative genomics, it was proven that IBV/CN/GD20230501 belongs to the GI-I type of strain and is serotype II. One alanine residue in the S1 subunit of the isolated strain was mutated into serine, and some mutations were observed in the ORF1ab gene and the terminal region of the genome. Animal challenge experiments using the EID50 and TCID50 calculations showed that IBV/CN/GD20230501 possesses strong respiratory pathogenicity, with early and long-term shedding of viruses and rapid viral spread. Antibody detection indicated that chickens infected with IBV/CN/GD20230501 exhibited delayed expression of early innate immune genes, while those infected with M41 showed rapid gene induction and effective viral control. Metabolomics analysis demonstrated that this virus infection led to differential expression of 291 ions in chicken serum, mainly affecting the citric acid cycle (tricarboxylic acid cycle).IMPORTANCEThis study identified an infectious bronchitis virus (IBV) strain isolated from vaccinated chickens in an immunized population that had certain sequence differences compared to IBV-M41, resulting in significantly enhanced pathogenicity and host defense. This strain has the potential to replace M41 as a more suitable challenge model for drug research. The non-targeted metabolomics analysis highlighting the citric acid cycle provides a new avenue for studying this highly virulent strain.

13.
Comput Biol Med ; 178: 108664, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38875905

ABSTRACT

N4-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous investigations have examined the distribution and functional implications of 4mC sites within the Rosaceae genome, focusing on their potential roles in gene expression regulation, environmental adaptation, and evolution. This research aims to improve the accuracy of predicting 4mC sites within the genome of Fragaria vesca, a Rosaceae plant species. Building upon the original 4mc-w2vec method, which combines word embedding processing and a convolutional neural network (CNN), we have incorporated additional feature encoding techniques and leveraged pre-trained natural language processing (NLP) models with different deep learning architectures including different forms of CNN, recurrent neural networks (RNN) and long short-term memory (LSTM). Our assessments have shown that the best model is derived from a CNN model using fastText encoding. This model demonstrates enhanced performance, achieving a sensitivity of 0.909, specificity of 0.77, and accuracy of 0.879 on an independent dataset. Furthermore, our model surpasses previously published works on the same dataset, thus showcasing its superior predictive capabilities.

14.
BMC Bioinformatics ; 25(1): 219, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898394

ABSTRACT

BACKGROUND: With the surge in genomic data driven by advancements in sequencing technologies, the demand for efficient bioinformatics tools for sequence analysis has become paramount. BLAST-like alignment tool (BLAT), a sequence alignment tool, faces limitations in performance efficiency and integration with modern programming environments, particularly Python. This study introduces PxBLAT, a Python-based framework designed to enhance the capabilities of BLAT, focusing on usability, computational efficiency, and seamless integration within the Python ecosystem. RESULTS: PxBLAT demonstrates significant improvements over BLAT in execution speed and data handling, as evidenced by comprehensive benchmarks conducted across various sample groups ranging from 50 to 600 samples. These experiments highlight a notable speedup, reducing execution time compared to BLAT. The framework also introduces user-friendly features such as improved server management, data conversion utilities, and shell completion, enhancing the overall user experience. Additionally, the provision of extensive documentation and comprehensive testing supports community engagement and facilitates the adoption of PxBLAT. CONCLUSIONS: PxBLAT stands out as a robust alternative to BLAT, offering performance and user interaction enhancements. Its development underscores the potential for modern programming languages to improve bioinformatics tools, aligning with the needs of contemporary genomic research. By providing a more efficient, user-friendly tool, PxBLAT has the potential to impact genomic data analysis workflows, supporting faster and more accurate sequence analysis in a Python environment.


Subject(s)
Computational Biology , Sequence Alignment , Software , Computational Biology/methods , Sequence Alignment/methods , Programming Languages , Genomics/methods
15.
Virus Genes ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866926

ABSTRACT

In order to study the integration of reticuloendotheliosis virus (REV) in pigeonpox virus (PPV), we collected suspected pigeonpox disease material, amplified the 4b core protein gene of PPV, the gp90 gene of REV, and the integrated sequence fragments from the end of the ORF201 segment of PPV to the beginning of the LTR of REV, and sequenced these genes. The results showed that a 4b core protein fragment of 332 bp was amplified and identified as pigeonpox virus, which was named SX/TY/LTR 01/2023. Sequence analysis showed that the pigeonpox virus isolate belonged to genotype A2, which was the closest to the domestic CVL strain, with a identity of 99.4%. A band of 1191 bp was amplified from the gp90 gene of REV, named SX/TY/PPV-REV01/2023, and sequence analysis indicated that REV belonged to genotype III. The sequence analysis showed that REV belonged to genotype III, and belonged to the same large branch as the domestic isolates JSRD0701 and LNR0801, with 99.3% identity. The integrated sequence fragment was amplified to a band of 637 bp, which determined that the REV sequence was integrated in the PPV rather than a mixed infection of the two viruses. This indicates that REV was integrated in this isolation of PPV, suggesting that pigeon farms need to prevent reticuloendotheliosis at the same time when preventing pigeonpox.

16.
Article in English | MEDLINE | ID: mdl-38868940

ABSTRACT

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

17.
STAR Protoc ; 5(2): 103114, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38843399

ABSTRACT

Forward genetic screens have been a powerful tool for discovering genes involved in various biological processes in Caenorhabditis elegans. Here, we present a protocol for forward genetic screening to identify novel factors involved in a biological process in C. elegans. We describe steps for mutagenesis, screening, and backcrossing. To save time and effort, we also detail procedures for utilizing whole-genome sequencing to exclude mutants of previously characterized genes from crosses for mapping mutations. For complete details on the use and execution of this protocol, please refer to Yoshida et al.1.


Subject(s)
Caenorhabditis elegans , Genetic Testing , Caenorhabditis elegans/genetics , Animals , Genetic Testing/methods , Mutagenesis/genetics , Mutation/genetics , Whole Genome Sequencing/methods
18.
BMC Microbiol ; 24(1): 205, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851713

ABSTRACT

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.


Subject(s)
Multilocus Sequence Typing , Humans , Multilocus Sequence Typing/methods , Transition Temperature , Mycobacterium/genetics , Mycobacterium/classification , Mycobacterium/isolation & purification , Bacterial Proteins/genetics , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/isolation & purification , DNA, Bacterial/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/diagnosis
19.
Int J Biol Macromol ; 273(Pt 2): 133085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871100

ABSTRACT

Allergy is a hypersensitive condition in which individuals develop objective symptoms when exposed to harmless substances at a dose that would cause no harm to a "normal" person. Most current computational methods for allergen identification rely on homology or conventional machine learning using limited set of feature descriptors or validation on specific datasets, making them inefficient and inaccurate. Here, we propose SEP-AlgPro for the accurate identification of allergen protein from sequence information. We analyzed 10 conventional protein-based features and 14 different features derived from protein language models to gauge their effectiveness in differentiating allergens from non-allergens using 15 different classifiers. However, the final optimized model employs top 10 feature descriptors with top seven machine learning classifiers. Results show that the features derived from protein language models exhibit superior discriminative capabilities compared to traditional feature sets. This enabled us to select the most discriminatory baseline models, whose predicted outputs were aggregated and used as input to a deep neural network for the final allergen prediction. Extensive case studies showed that SEP-AlgPro outperforms state-of-the-art predictors in accurately identifying allergens. A user-friendly web server was developed and made freely available at https://balalab-skku.org/SEP-AlgPro/, making it a powerful tool for identifying potential allergens.


Subject(s)
Allergens , Deep Learning , Machine Learning , Allergens/immunology , Allergens/chemistry , Software , Computational Biology/methods , Humans , Neural Networks, Computer
20.
Comput Struct Biotechnol J ; 23: 2289-2303, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38840832

ABSTRACT

The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.

SELECTION OF CITATIONS
SEARCH DETAIL
...