ABSTRACT
This study presents the design and evaluation of a prototype snake-like robot that possesses an actuation system based on shape memory alloys (SMAs). The device is constructed based on a modular structure of links connected by two degrees of freedom links utilizing Cardan joints, where each degree of freedom is actuated by an agonist-antagonist mechanism using the SMA spring-shaped actuators to generate motion, which can be easily replaced once they reach a degradation point. The methodology for programming the spring shape into the SMA material is described in this work, as well as the instrumentation required for the monitoring and control of the actuators. A simplified design is presented to describe the way in which the motion is performed and the technical difficulties faced in manufacturing. Based on this information, the way in which the design is adapted to generate a feasible robotic system is described, and a mathematical model for the robot is developed to implement an independent joint controller. The feasibility of the implementation of the SMA actuators regarding the motion of the links is verified for the case of a joint, and the change in the shape of the snake robot is verified through the implementation of a set of tracking references based on a central pattern generator. The generated tracking results confirm the feasibility of the proposed mechanism in terms of performing snake gaits, as well as highlighting some of the drawbacks that should be considered in further studies.
ABSTRACT
This article presents the design and implementation of a linear actuator based on NiTi Shape Memory Alloys with temperature and position measurements based on a magnetic sensor array and a set of thermistors. The position instrumentation is contact free to avoid friction perturbations; the position signal conditioning is carried out through the calculation of the response of each magnetic sensor, selecting the closest sensor to ensure accurate results on the full range of movement. Experimental results validate the accuracy of the position sensing with a competitive behaviour.
ABSTRACT
Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains or twins. Here, surface SPD was induced by plastic deformation under frictional contact with a spherical tool in a hot rolled CuAlBe-shape memory alloy. This created a microstructure consisting of a few course martensite variants and ultrafine intersecting bands of secondary martensite and/or austenite, increasing the nanohardness of hot-rolled material from 2.6 to 10.3 GPa. In as-cast material the increase was from 2.4 to 5 GPa. The friction coefficient and surface damage were significantly higher in the hot rolled condition. Metallographic evidence showed that hot rolling was not followed by recrystallisation. This means that a remaining dislocation substructure can lock the martensite and impedes back-transformation to austenite. In the as-cast material, a very fine but softer austenite microstructure was found. The observed difference in properties provides an opportunity to fine-tune the process either for optimal wear resistance or for maximum surface hardness. The modified hot-rolled material possesses the highest hardness obtained to date in nanostructured non-ferrous alloys.
ABSTRACT
The paper explores the applicability of laser-assisted synthesis for producing high density Cu-Al-Ni alloys with shape memory characteristics, that could be further developed towards a method of additive manufacturing of large size Cu-based shape memory alloys (SMA). The manufacturing approach consists in laser melting of elemental powder mixture in a controlled atmosphere of varying relative pressure of protective argon gas, producing alloys of 14.2 wt.% Al and Ni content varying between 2 and 4 wt.%. All the fabricated alloys are found to have attained martensitic microstructures capable of SMA specific phase transformations in the temperature range from 85 to 192 °C. Both gas pressure and content of Ni are found to affect the specific transformation temperatures, transformation enthalpies, and mechanical properties. In particular, increasing gas pressure suppresses the austenite to martensite transformation reducing microhardness. In conclusion, the selective laser melting (SLM) employed in this work is shown capable of producing high density Cu-Al-Ni SMA (porosity ≈ 2%).