Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Molecules ; 27(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431929

ABSTRACT

Mesoscopic shear elasticity has been revealed in ordinary liquids both experimentally by reinforcing the liquid/surface interfacial energy and theoretically by nonextensive models. The elastic effects are here examined in the frame of small molecules with strong electrostatic interactions such as room temperature ionic liquids [emim][Tf2N] and nitrate solutions exhibiting paramagnetic properties. We first show that these charged fluids also exhibit a nonzero low-frequency shear elasticity at the submillimeter scale, highlighting their resistance to shear stress. A neutron scattering study completes the dynamic mechanical analysis of the paramagnetic nitrate solution, evidencing that the magnetic properties do not induce the formation of a structure in the solution. We conclude that the elastic correlations contained in liquids usually considered as viscous away from any phase transition contribute in an effective way to collective effects under external stress whether mechanical or magnetic fields.

2.
J Biomed Mater Res A ; 110(2): 298-303, 2022 02.
Article in English | MEDLINE | ID: mdl-34351058

ABSTRACT

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale-independent homogeneous flows and without considering fluid-surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid-like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo-mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication.


Subject(s)
Plasma , Elasticity , Humans , Stress, Mechanical
3.
J Phys Condens Matter ; 34(12)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34942612

ABSTRACT

We present a novel approach to the understanding of heat effects induced by structural relaxation of metallic glasses. The key idea consists in the application of a general thermodynamic equation for the entropy change due to the evolution of a non-equilibrium part of a complex system. This non-equilibrium part is considered as a defect subsystem of glass and its evolution is governed by local thermoactivated rearrangements with a Gibbs free energy barrier proportional to the high-frequency shear modulus. The only assumption on the nature of the defects is that they should provide a reduction of the shear modulus-a diaelastic effect. This approach allows to determine glass entropy change upon relaxation. On this basis, the kinetics of the heat effects controlled by defect-induced structural relaxation is calculated. A very good agreement between the calculation and specially performed calorimetric and shear modulus measurements on three metallic glasses is found.

4.
Polymers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34301137

ABSTRACT

The recent identification of a finite shear elasticity in mesoscopic fluids has motivated the search of other solid-like properties of liquids. We present an innovative thermal approach of liquids. We identify a dynamic thermo-elastic mesoscopic behavior by building the thermal image produced by different liquids upon applying a low frequency mechanical shear field. We selected three fluids: a low molecular weight polybutylacrylate (PBuA), polypropyleneglycol (PPG), and glycerol. We demonstrate that a part of the energy of the shear strain is converted in cold and hot shear bands varying synchronously with the applied shear field. This thermodynamic change suggests a coupling to shear elastic modes in agreement with the low frequency shear elasticity theoretically foreseen and experimentally demonstrated.

5.
Ultrasonics ; 116: 106478, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34174743

ABSTRACT

Keratoconus, a serious corneal disorder, often causes highly irregular astigmatism and different degrees of visual impairment. Riboflavin/UVA corneal collagen cross-linking(CXL) is currently approved for effective treatment of keratoconus by enhancing the mechanical strength of collagen fibers in the cornea. However, few methods are capable of quantitatively and non-destructively assessing the mechanical properties of the cornea before and after CXL treatments. This study developed a corneal viscoelasticity imaging method based on comb-push ultrasound shear elastography (CUSE) and implemented this method on a Verasonics™ Vantage 256 ultrasound open system with a high-frequency linear array ultrasound transducer. Push beams were generated by three teeth each consisting of 10 elements (working frequency = 10.41 MHz) for inducing Lamb wave propagation in the cornea, and then the system immediately switched to the plane wave imaging mode using 60 elements in the middle (working frequency = 18 MHz). This method can provide a high-resolution 2D Lamb wave velocity image overlapping with a B-mode image as well as quantitative viscoelasticity estimation according to experimentally obtained phase velocity dispersion of Lamb waves. The validation experiments were performed on ex vivo porcine corneas, and the accuracy of elasticity estimation was verified by a tensile test. The results showed that the shear elasticity increased and the viscosity decreased after CXL treatment. The shear elasticity results (reported as mean ±â€¯standard deviation) of one control group with no CXL treatment and three CXL-treated groups named as 10 min, 30 min, and 60 min groups according to UV irradiation time were 14.62 ±â€¯3.38 kPa, 49.47 ±â€¯3.63 kPa, 116.54 ±â€¯23.99 kPa, and 197.89 ±â€¯39.64 kPa, respectively, which was in agreement with the results of tensile tests. The ultrasound safety measurement indicated that this method could have acceptable safety, but further to ocular tissue and vision function. The study demonstrated the possibility of using a commercial ultrasound system to obtain high-resolution images of corneal mechanical properties as well as the ability to quantify changes induced by CXL treatment. Therefore, the proposed method could serve as a helpful tool in the studies related in corneal biomechanics.

6.
Clin Biomech (Bristol, Avon) ; 78: 105093, 2020 08.
Article in English | MEDLINE | ID: mdl-32619871

ABSTRACT

BACKGROUND: The aim of this study was to use ultrasound vibro-elastography (UVE) for measuring surface wave speed and assessing mechanical properties of ex vivo porcine reproductive tissues, including the uterus, bladder, cornua and cervix. METHODS: In UVE, a 0.1-s harmonic vibration at low frequency was generated on the tissue surface with a handheld shaker. A linear-array ultrasound probe was used to measure the resulting surface wave propagation. Surface wave speeds of tissues were measured in the frequency range of 100-300 Hz. Mechanical properties of the tissue were calculated based on wave speed dispersion with frequency. FINDINGS: The obtained results showed that the surface wave speeds of porcine bladder, cervix, cornua and uterus increased with frequency. There were no statistically significant differences in the wave speeds or mechanical properties among the porcine bladder, cervix, cornua and uterus. INTERPRETATION: Experimental data obtained in this study may be used as a reference to study in vivo surface wave speed or mechanical properties for porcine or human reproductive tissues.


Subject(s)
Elasticity Imaging Techniques , Mechanical Phenomena , Reproduction , Animals , Biomechanical Phenomena , Female , Humans , Mechanical Tests , Swine , Ultrasonography , Vibration
7.
Ultrason Imaging ; 37(4): 323-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25628095

ABSTRACT

A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement.


Subject(s)
Elasticity Imaging Techniques/methods , Models, Biological , Ultrasonography, Doppler, Color/methods , Elastic Modulus , Phantoms, Imaging
8.
Adv Colloid Interface Sci ; 222: 148-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24828304

ABSTRACT

The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like ß-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein ß-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of ß-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets.


Subject(s)
Proteins/chemistry , Rheology/methods , Adsorption , Elasticity , Viscosity
9.
Ultrasound Med Biol ; 40(8): 1785-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24814645

ABSTRACT

Our aims were (i) to compare in vivo measurements of myocardial elasticity by shear wave dispersion ultrasound vibrometry (SDUV) with those by the conventional pressure-segment length method, and (ii) to quantify changes in myocardial viscoelasticity during systole and diastole after reperfused acute myocardial infarction. The shear elastic modulus (µ1) and viscous coefficient (µ2) of left ventricular myocardium were measured by SDUV in 10 pigs. Young's elastic modulus was independently measured by the pressure-segment length method. Measurements made with the SDUV and pressure-segment length methods were strongly correlated. At reperfusion, µ1 and µ2 in end-diastole were increased. Less consistent changes were found during systole. In all animals, µ1 increased linearly with left ventricular pressure developed during systole. Preliminary results suggest that µ1 is preload dependent. This is the first study to validate in vivo measurements of myocardial elasticity by a shear wave method. In this animal model, the alterations in myocardial viscoelasticity after a myocardial infarction were most consistently detected during diastole.


Subject(s)
Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Heart Ventricles/diagnostic imaging , Myocardial Infarction/diagnostic imaging , Animals , Disease Models, Animal , Swine , Viscosity
10.
Ultrasound Med Biol ; 40(4): 655-74, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24582297

ABSTRACT

This review considers three general classes of physical as opposed to phenomenological models of the shear elasticity of tissues. The first is simple viscoelasticity. This model has a special role in elastography because it is the language in which experimental and clinical data are communicated. The second class of models involves acoustic relaxation, in which the medium contains inner time-dependent systems that are driven through the external bulk medium. Hysteresis, the phenomenon characterizing the third class of models, involves losses that are related to strain rather than time rate of change of strain. In contrast to the vast efforts given to tissue characterization through their bulk moduli over the last half-century, similar research using low-frequency shear data is in its infancy. Rather than a neat summary of existing facts, this essay is a framework for hypothesis generation-guessing what physical mechanisms give tissues their shear properties.


Subject(s)
Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Shear Strength/physiology , Animals , Computer Simulation , Humans , Scattering, Radiation , Sound , Stress, Mechanical
11.
Biomed Mater Eng ; 24(1): 467-74, 2014.
Article in English | MEDLINE | ID: mdl-24211929

ABSTRACT

This paper describes a new method for shear wave velocity estimation that is capable of extruding outliers automatically without preset threshold. The proposed method is an adaptive random sample consensus (ARANDSAC) and the metric used here is finding the certain percentage of inliers according to the closest distance criterion. To evaluate the method, the simulation and phantom experiment results were compared using linear regression with all points (LRWAP) and radon sum transform (RS) method. The assessment reveals that the relative biases of mean estimation are 20.00%, 4.67% and 5.33% for LRWAP, ARANDSAC and RS respectively for simulation, 23.53%, 4.08% and 1.08% for phantom experiment. The results suggested that the proposed ARANDSAC algorithm is accurate in shear wave speed estimation.


Subject(s)
Algorithms , Image Enhancement/methods , Shear Strength , Computer Simulation , Elastic Modulus , Humans , Linear Models , Phantoms, Imaging , Software , Vibration , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL