Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Microorganisms ; 12(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39065141

ABSTRACT

An epidemiological study spanning twelve years has revealed that sheeppox disease is both widespread and endemic, predominantly surging during the winter and summer seasons. This investigation focused on sheeppox across 11 field outbreaks, involving 889 animals from non-migratory flocks across six districts in Karnataka, in the southern peninsula of India. Among these, 105 animals exhibited clinical signs suggestive of sheeppox, such as lesions on the body, and 95 cases were confirmed through PCR testing. The overall positivity rate for sheeppox stood at 10.68% (95 out of 889 animals). The incidence of sheeppox was notably higher in animals aged between 1 and 2 years and was more prevalent in females. Affected animals displayed symptoms including respiratory distress, weakness, fever, loss of appetite, depression, and various skin lesions ranging from papular to pock lesions across their bodies. There was a significant increase in total leukocyte count, while hemoglobin levels, red blood cell counts, and hematocrit values significantly decreased. On gross examination, sheeppox lesions, varying from vesicular to nodular forms, were predominantly found on hairless areas of the body. Microscopic examination of skin lesions revealed extensive changes, such as hyperkeratosis, parakeratosis, acanthosis, hydropic degeneration, and necrosis of epithelial cells, along with characteristic intracytoplasmic viral inclusions. The lungs exhibited type-II pneumocyte hyperplasia and proliferative bronchiolitis, also with intracytoplasmic inclusions. Confirmation of the sheeppox virus was achieved through PCR and subsequent sequence analysis. Phylogenetic analysis of the full-length P32 and RPO30 gene demonstrated homology with sheeppox isolates from various parts of India and neighboring countries, indicating that Indian sheeppox viruses are highly lineage-specific and correlate with the host of origin. Based on these findings, it is recommended to implement a homologous vaccination strategy, utilizing selective host/viral strains to enhance protection in susceptible animals.

2.
Vaccines (Basel) ; 12(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39066443

ABSTRACT

Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections.

3.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38523527

ABSTRACT

Sheeppox and goatpox are transboundary viral diseases of sheep and goats that cause significant economic losses to small and marginal farmers worldwide, including India. Members of the genus Capripoxvirus (CaPV), namely Sheeppox virus (SPPV), Goatpox virus (GTPV), and Lumpy skin disease virus (LSDV), are antigenically similar, and species differentiation can only be accomplished using molecular approaches. The present study aimed to understand the molecular epidemiology and host specificity of SPPV and GTPV circulating in India through sequencing and structural analysis of the RNA polymerase subunit-30 kDa (RPO30) gene. A total of 29 field isolates from sheep (n = 19) and goats (n = 10) belonging to different geographical regions of India during the period: Year 2015 to 2023, were analyzed based on the sequence and structure of the full-length RPO30 gene/protein. Phylogenetically, all the CaPV isolates were separated into three major clusters: SPPV, GTPV, and LSDV. Multiple sequence alignment revealed a highly conserved RPO30 gene, with a stretch of 21 nucleotide deletion in all SPPV isolates. Additionally, the RPO30 gene of the Indian SPPV and GTPV isolates possessed several species-specific conserved signature residues/motifs that could act as genotyping markers. Secondary structure analysis of the RPO30 protein showed four α-helices, two loops, and three turns, similar to that of the E4L protein of vaccinia virus (VACV). All the isolates in the present study exhibited host preferences across different states of India. Therefore, in order to protect vulnerable small ruminants from poxviral infections, it is recommended to take into consideration a homologous vaccination strategy.


Subject(s)
Capripoxvirus , Cattle Diseases , Goat Diseases , Poxviridae Infections , Sheep Diseases , Cattle , Sheep/genetics , Animals , DNA, Viral/chemistry , DNA, Viral/genetics , Capripoxvirus/genetics , Sequence Analysis, DNA/veterinary , Ruminants , Goats , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , India/epidemiology , Sheep Diseases/epidemiology , Goat Diseases/epidemiology
4.
Trop Anim Health Prod ; 55(6): 401, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950091

ABSTRACT

In this study, in order to reveal the immune response against the disease in naturally infected sheep with SPPV, the expressions of various pro- or anti-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1beta (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and interleukin-12 (IL-12) were evaluated immunohistochemically. The material of this study consisted of tissue samples taken from 24 sheep, which were brought as dead for routine histopathological examination to the Department of Pathology. Avidin-biotin-peroxidase method was used for immunohistochemistry. Characteristic pox lesions were observed in the skin, lungs and kidneys. In histopathological examinations, pox cells, which are very characteristic for the diagnosis of the disease, were observed in all three tissues. Capripoxvirus nucleic acid was detected in 8 of the 24 tissues. Samples were sequenced, and a phylogenetic tree was constructed with reference strains from GenBank. Strains from the study clustered with sheeppox virus references. In conclusion, the levels of pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-1ß, IL-2, IL-8 and IL12 (Th1) were much more dominant compared to the levels of anti-inflammatory cytokines: IL-10 and IL-6 (Th2). This supported the fact that the cellular immune response is much more effective than the humoral immune response in sheeppox.


Subject(s)
Capripoxvirus , Interleukin-8 , Animals , Sheep , Interleukin-10 , Interleukin-2 , Interleukin-6 , Tumor Necrosis Factor-alpha , Phylogeny , Cytokines/genetics , Interferon-gamma , Anti-Inflammatory Agents
5.
Animals (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37508058

ABSTRACT

The genus Capripoxvirus belongs to the Poxviridae family. The sheeppox, goatpox, and lumpy skin disease viruses are three species of this genus with 96% identity in their genomes. These are financially devastating viral infections among cattle, which cause a reduction in animal products and lead to a loss in livestock industries. In the current study, the phylogenetic analysis was carried out to reveal the evolutionary relationships of Capripoxvirus species (i.e., sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV)) with other viruses from the Poxviridae family with >96% query coverage to find the similarity index among all members. The three viruses (i.e., SPPV, GTPV, and LSDV) joined the clade of Capripoxvirus of the Poxviridae family in the phylogenetic tree and exhibited close evolutionary relationships. The multiple sequence alignment using ClustalOmega revealed significant variations in the protein sequences of the DNA-dependent RNA polymerase of SPPV, GTPV, and LSDV. The three-dimensional structures of five selected bee peptides and DNA-directed RNA polymerase of SPPV, GTPV, and LSDV were predicted using trRosetta and I-TASSER and used for molecular docking and simulation studies. The protein-protein docking was carried out using HADDOCK server to explore the antiviral activity of peptides as honey bee proteins against SPPV, GTPV, and LSDV. In total, five peptides were docked to DNA-directed RNA polymerase of these viruses. The peptides mellitin and secapin-1 displayed the lowest binding scores (-106.9 +/- 7.2 kcal/mol and -101.4 +/- 11.3 kcal/mol, respectively) and the best patterns with stable complexes. The molecular dynamics simulation indicated that the complex of protein DNA-dependent RNA polymerase and the peptide melittin stayed firmly connected and the peptide binding to the receptor protein was stable. The findings of this study provide the evidence of bee peptides as potent antimicrobial agents against sheeppox, goatpox, and lumpy skin disease viruses with no complexity.

6.
Anal Chim Acta ; 1267: 341391, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37257965

ABSTRACT

Capripoxvirus (CaPV) contains three viruses that have caused massive losses in the livestock and dairy industries. Accurate CaPV differentiation has far-reaching implications for effectively controlling outbreaks. However, it has a great challenge to distinguishing three viruses due to high homology of 97%. Here, we established a sensitive CRISPR/Cas12a array based on Multiple-recombinase polymerase amplification (M-RPA) for CaPV differentiation, which provided a more comprehensive and accurate differentiation mode targeting VARV B22R and RPO30 genes. By sensitive CRISPR/Cas12a and M-RPA, the actual detection limits of three viruses were as low as 50, 40 and 60 copies, respectively. Moreover, Lateral flow dipstick (LFD) array based on CRISPR/Cas12a achieved portable and intuitive detection, making it suitable for point-of-care testing. Therefore, CRISPR/Cas12a array and LFD array paved the way for CaPV differentiation in practice. Additionally, we constructed a real-time quantitative PCR (qPCR) array to fill the qPCR technical gap in differentiation and to facilitate the quarantine departments.


Subject(s)
Capripoxvirus , Poxviridae Infections , Animals , Capripoxvirus/genetics , Poxviridae Infections/diagnosis , Goats/genetics , Real-Time Polymerase Chain Reaction , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
7.
Vaccines (Basel) ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37112675

ABSTRACT

Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. In our study, we compared a commercially available live-attenuated lumpy skin disease virus (LSDV) vaccine strain (Lumpyvax) with our recently developed inactivated LSDV vaccine candidate regarding their protective efficacy against SPPV in sheep. Both vaccines were proven to be safe in sheep, and neither clinical signs nor viremia could be detected after vaccination and challenge infection. However, the local replication of the challenge virus in the nasal mucosa of previously vaccinated animals was observed. Because of the advantages of an inactivated vaccine and its heterologous protection efficacy against SPPV in sheep, our inactivated LSDV vaccine candidate is a promising additional tool for the prevention and control of SPPV outbreaks in the future.

8.
Virus Genes ; 59(3): 437-448, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36913064

ABSTRACT

The outbreak of Sheep and goat pox (SGP) viral infections have increasingly been reported despite vaccinating the majority of sheep populations in Iran. The objective of this study was to predict the impacts of the SGP P32/envelope variations on the binding with host receptors as a candidate tool to assess this outbreak. The targeted gene was amplified in a total of 101 viral samples, and the PCR products were subjected to Sanger sequencing. The polymorphism and phylogenetic interactions of the identified variants were assessed. Molecular docking was performed between the identified P32 variants and the host receptor and the effects of these variants were evaluated. Eighteen variations were identified in the investigated P32 gene with variable silent and missense effects on the envelope protein. Five groups (G1-G5) of amino acid variations were identified. While there were no amino acid variations in the G1 (wild-type) viral protein, G2, G3, G4, and G5 proteins had seven, nine, twelve, and fourteen SNPs, respectively. Based on the observed amino acid substitutions, multiple distinct phylogenetic places were occupied from the identified viral groups. Dramatic alterations were identified between G2, G4, and G5 variants with their proteoglycan receptor, while the highest binding was revealed between goatpox G5 variant with the same receptor. It was suggested that the higher severity of goatpox viral infection originated from its higher affinity to bind with its cognate receptor. This firm binding may be explained by the observed higher severity of the SGP cases from which G5 samples were isolated.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Animals , Sheep , Viral Envelope Proteins/genetics , Iran , Phylogeny , Molecular Docking Simulation , Poxviridae Infections/veterinary , Capripoxvirus/genetics , Goats
9.
Heliyon ; 8(11): e11745, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36439728

ABSTRACT

Antibody development is the integral process of generating and characterizing an antibody. It commences by inoculating the antigen of interest into laboratory animals, allowing the immune system develops large quantities of antibodies. This was aimed at developing antibodies against the virion of Goatpox and Sheeppox virus vaccines. The ability of Goatpox and Sheeppox vaccines was assessed. Regarding this study, the antibody titers against both Goatpox and Sheeppox viruses was increased in the same manner. The amount of IgG was determined to be 2.29 µg/µl and 2.18 µg/µl against virions of Goatpox virus and Sheeppox respectively. The purified IgG was analyzed by SDS-PAGE. Different bands of the purified antibodies were clearly visualized, and the molecular weight of IgG was estimated to be 67 kDa and 25 kDa. Additionally, antigen/antibody binding was confirmed by Western blot using GTPV A27 antigen. No significant differences in antibody titers were observed between the two groups (p < 0, 05).

10.
Lett Appl Microbiol ; 75(6): 1628-1638, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067038

ABSTRACT

The present study was aimed to elucidate the host-virus interactions using RNA-Seq analysis at 1 h and 8 h of post-infection of sheeppox virus (SPPV) in lamb testis cell. The differentially expressed genes (DEGs) and the underlying mechanisms linked to the host immune responses were obtained. The protein-protein interaction (PPI) network analysis and ingenuity pathway analysis (IPA) illustrated the interaction between the DEGs and their involvement in cell signalling responses. Highly connected hubs viz. AURKA, CHEK1, CCNB2, CDC6 and MAPK14 were identified through PPI network analysis. IPA analysis showed that IL-6- and ERK5-mediated signalling pathways were highly enriched at both time points. The TP53 gene was identified to be the leading upstream regulator that directly responded to SPPV infection, resulting in downregulation at both time points. The study provides an overview of how the lamb testis genes and their underlying mechanisms link to growth and immune response during SPPV infection.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Male , Sheep , Animals , Testis , Poxviridae Infections/veterinary , Capripoxvirus/genetics , Transcriptome , Gene Expression Profiling
11.
Animals (Basel) ; 12(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36009674

ABSTRACT

This study aimed to investigate a sheeppox outbreak in a highly susceptible naive sheep population in Kharsit village, Gharbia Governorate, Egypt. Moreover, to compare commercial sheeppox vaccines, the Romanian strain and RM-65 vaccines, as emergency vaccination against sheeppox under field conditions. In December 2018, a sheeppox outbreak occurred in a flock of 65 sheep upon the purchase of an apparently healthy ewe from outside the village. This ewe showed a systemic disease with cutaneous lesions after a few days, thereafter more cases began to appear. Cutaneous lesions in other sheep in the flock in the form of macules, papules, and scabs were common in wool-less areas of the body, in addition to fever and respiratory disorders. Postmortem findings revealed the congestion of visceral organs with apparent gross pathology of the lung. Biopsies of cutaneous lesions and visceral organs were collected, and sheeppox was identified by histopathology and transmission electron microscopy, which showed the existence of sheeppox cells and intracytoplasmic brick-shape sheeppox virions. The Romanian strain and RM-65 vaccines were used for the emergency vaccination for two different groups of animals and the third group was left as a control group. Serum samples were collected before vaccination as well as 21 days post-vaccination, and serum protein fractionation analysis was performed for all groups. The outbreak ended after 2.5 months, the cumulative incidence was 66.2%, and the overall case fatality was 51.1%. There was significantly higher protection against sheeppox infection and mortalities among RM-65 vaccine immunized group compared to Romanian strain vaccine-immunized animals at p < 0.05. RM-65-vaccinated animals did not show sheeppox cases or mortalities, compared to Romanian strain-vaccinated animals, which had mild pox signs in 78% of animals and case fatality of 35.7%. The serum protein analysis also indicated the superior performance of the RM-65 vaccine; it increased the level of α1-globulin and ß-globulin compared to the Romanian strain, which increased the level of ß-globulin only. The current study shows a better performance of the tested RM-65 than the Romanian strain vaccine for emergency vaccination against sheeppox under field conditions. These findings point to the validity of emergency vaccination against sheeppox and the importance of the comparative field evaluation of vaccines; however, wide-scale studies are required for further evaluation. Future investigation of whether the Romanian strain itself or vaccine-production-related issues are responsible for these findings is required.

12.
Braz J Microbiol ; 53(4): 2309-2314, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35895274

ABSTRACT

Goatpox, sheeppox, and peste-des-petits-ruminants (PPR) are economically important virus diseases affecting goats and sheep, which often cause coinfection/comorbidities in the field. Coinfection with these viruses leads to enhanced infection in natural scenarios in terms of morbidities and mortalities. Currently, individual live attenuated vaccines are being used to mitigate these diseases and research on combination vaccines for these diseases is encouraging. For the preparation of combination vaccines, vaccine strains of the peste-des-petits-ruminants virus (PPRV), goatpox virus (GTPV), and sheeppox virus (SPPV) are grown separately and GTPV + PPRV are mixed for vaccination of goats, and PPRV + SPPV for sheep. Growing capripox and PPRV strains in the same cells simultaneously without the titer loss will save the time and cost of production. In the current study, we have evaluated the coinfection kinetics of capripox virus and a PPRV using a candidate GTPV vaccine strain (originally caused infection in both goats and sheep in the field) and PPRV/Sungri/96 (vaccine strain) in Vero cells. At high multiplicity of infection (MOI), PPRV was excluded from coinfection by GTPV, whereas at a low multiplicity coexistence/accommodation was observed between PPRV and GTPV without loss of the titer. The results shed light on the possibility of the production of two vaccine strains in the same cells using the coinfection model economically.


Subject(s)
Capripoxvirus , Coinfection , Goat Diseases , Peste-des-petits-ruminants virus , Sheep Diseases , Viral Vaccines , Chlorocebus aethiops , Sheep , Animals , Peste-des-petits-ruminants virus/genetics , Capripoxvirus/genetics , Vero Cells , Coinfection/veterinary , Vaccines, Attenuated , Goats , Ruminants , Vaccines, Combined
13.
Heliyon ; 8(6): e09674, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35711991

ABSTRACT

Sheep and goatpox are caused by pox virus and economically very important. The study was conducted to estimate the economic losses due to sheep and goatpox, to estimate the morbidity and mortality as well as the transmission parameters. A cross sectional study was conducted in Chifra districts of Afar region from July 2020 to December 2020 using questioner survey. For the estimation of the economic impacts and the transmission parameters of the outbreak, a data was collected at the end of the outbreak through a direct face to face interview. Transmission parameters were estimated based on a final size approach. Whereas, economic impacts were estimated descriptively using different formulas based on the type of losses. The overall morbidity, mortality and case fatality of sheep and goatpox were 51.6%, 2.0%, and 3.9%, respectively. The average flock level losses due to treatment cost, mortality and abortion were 320.3, 1250 and 1195.6 Ethiopian birr (ETB), respectively. The outbreak caused a total of 63617 ETB losses in the district. The highest loss was due to mortality (28750ETB), whereas the least loss was due to treatment cost (7367ETB). The outbreak had 0.14 and 1.41 transmission rate parameters per day and basic reproduction ratio, respectively. There was a significant difference in the transmission of the infection between individual animals (p < 0.001). To limit the economic losses due to this disease, the farmers should give more attention towards this disease and a systematic control program comprising vaccination and limitation of movement of sheep and goat should be implemented to alleviate the losses due to sheep and goatpox.

14.
Gene ; 831: 146561, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35561845

ABSTRACT

Virus infection alters host gene expression, therefore ideal and stable reference housekeeping genes are required to normalise the expression of other expressed host genes in quantitative real-time PCR (qRT-PCR). The suitable reference gene may vary in response to different viral infections in different hosts or cells. In the present study, we cultured primary lamb testis cells (LTC) and assessed the expression stability of seven widely used housekeeping genes (B2M, HMBS, HPRT1, HSP-90, POLR2A, 18s_RNA, GAPDH) as reference genes in Sheeppox virus (SPPV) infected and control (uninfected-0h) LTC at 0.5h, 4.0h, 8.0h, and 12.0h post-infection) using NormFinder, Bestkeeper, geNorm, and the comparative ΔCT method in RefFinder based on their expression levels. Analysis revealed that HSP90, 18s_RNA, HPRT, POLR2A, and B2M were the most stable genes from the panel in the individual analysis group in 0h, 0.5h, 4.0h, 8.0h, and 12.0h, respectively. Furthermore, B2M was shown to be the most stable reference gene in the combined control with the respective and overall infected groups, except the control group of 4.0hpi of SPPV infection. In this study, we selected the most suitable reference genes in LTC for particular time points of SPPV infection. The identified most suitable housekeeping gene can be used during normalization of expression of other targeted genes at aspecific time point of SPPV infection.


Subject(s)
Capripoxvirus , Gene Expression Profiling , Animals , Gene Expression , Gene Expression Profiling/methods , Male , RNA, Ribosomal, 18S , Real-Time Polymerase Chain Reaction/methods , Reference Standards , Sheep/genetics , Testis
15.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 139-147, 2022 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-35142125

ABSTRACT

The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-ß2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Animals , Epitopes, T-Lymphocyte/genetics , Peptides/genetics , Sheep
16.
Virus Res ; 310: 198671, 2022 03.
Article in English | MEDLINE | ID: mdl-34986368

ABSTRACT

Capripoxvirus diseases are listed as reportable diseases by World Organization for Animal Health (OIE). Lumpy skin disease virus (LSDV) and sheeppox virus (SPPV), which can only be distinguished by molecular analysis, cause moderately, severe, or sometimes fatal infections in cattle and sheep. Even though vaccines are the most effective way to control the infection, their effectiveness may decrease in some cases. Therefore, it is significant to explore antiviral drugs against these diseases along with the vaccine. This study aimed to investigate the antiviral efficiency of ivermectin (IVM) at different stages of in vitro replication of LSDV and SPPV. For this purpose, viral titers (TCID50/mL) of the viruses not treated with IVM (0.0 µM) and treated with non-cytotoxic concentrations of IVM (1.0 and 2.5 µM) were compared during a nine-day (216 h) post-infection period by viral titration assay. At 2.5 µM concentrations of IVM, the mean viral titer was significantly (P<0.05) reduced by approximately three logs for the replication stage of LSDV and SPPV. To evaluate the antiviral activity of IVM against LSDV and SPPV by treatment at the virus attachment and penetration stages, the titers of the virus either untreated or treated with 2,5 µM IVM were compared by virus titration assay. The number of infectious virions for LSDV and SPPV were decreased by 99.82% and 99.87% at the viral replication stage, 68.38% and 25.01% at the attachment stage, and 57.83% and 0.0% at the penetration stage, respectively. It was determined that ivermectin is statistically more effective on LSDV than SPPV at the virus attachment and penetration stages (P<0.05). This study found that the drug IVM can inhibit capripoxviruses, including LSDV and SPPV at various stages of the propagation. Moreover, this research predicted the in vitro antiviral ability of IVM against capripoxvirus infections for the first time.


Subject(s)
Capripoxvirus , Lumpy skin disease virus , Sheep Diseases , Animals , Antiviral Agents/pharmacology , Capripoxvirus/physiology , Cattle , Ivermectin/pharmacology , Sheep , Sheep Diseases/drug therapy
17.
Vet Res Commun ; 46(1): 101-107, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34585340

ABSTRACT

An outbreak of sheeppox was investigated in a cluster of villages situated in Western Himalayan ranges of a Northern Indian state. Non-migratory sheep (n = 80) of native breeds namely Gaddi and Rampur Bushair were infected and 15 have died. The outbreak started after a few animals contracted the disease during the summer grazing period at the highland pastures from migrating flocks of sheep. This initial outbreak resulted in a further spreading of the disease into the valley. Clinical examination revealed varying degree of cutaneous papular lesions and respiratory distress. Upon necropsy, visceral lesions in the lungs, trachea and kidneys were also found. Clinical and morbid samples were found positive for sheeppox virus using group specific P32 gene and I3L gene based multiplex PCR differentiating sheeppox and goatpox viruses. Histopathological, hematological and blood biochemical analysis also supported the pathology of an acute viral infection. The causative sheeppox virus strain was isolated using lamb testicular cell culture and phylogenetic analysis, based upon P32 and RPO30 genes, showed its clustering with other Indian strains reported from neighboring states. This study demonstrated the spread of sheeppox virus to new niches by migratory sheep flocks leading to establishment of endemic infections in many new pockets of higher Western Himalayas.


Subject(s)
Capripoxvirus , Goat Diseases , Poxviridae Infections , Sheep Diseases , Animals , Capripoxvirus/genetics , Disease Outbreaks/veterinary , Goats , India/epidemiology , Phylogeny , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Sheep , Sheep Diseases/epidemiology
18.
Chinese Journal of Biotechnology ; (12): 139-147, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927699

ABSTRACT

The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-β2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.


Subject(s)
Animals , Capripoxvirus , Epitopes, T-Lymphocyte/genetics , Peptides/genetics , Poxviridae Infections , Sheep , Sheep Diseases
19.
Transbound Emerg Dis ; 69(4): 1837-1846, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34033248

ABSTRACT

Sheeppox is a transboundary disease of small ruminants caused by infection with the capripoxvirus sheeppox virus. Sheeppox is found in Africa, the Middle East and Asia and is characterized by fever, multifocal cutaneous raised lesions and death. Vaccination with live attenuated capripoxvirus (CPPV) strains is an effective and widely used strategy to contol sheeppox outbreaks; however, there are few reports of post-vaccination field surveillance studies. This study used a commercially available enzyme-linked immunosorbent assay (ELISA) to examine quantitative and temporal features of the humoral response of sheep vaccinated with a live-attenuated CPPV strain in Mongolia. Four hundred samples were tested using the ELISA commercial kit, and a subset of 45 samples were also tested with a virus neutralization test (VNT). There was substantial agreement between the VNT and ELISA tests. Antibodies to CPPV were detected between 40 and 262 days post-vaccination. There was no significant difference between serological status (positive/negative) and sex or age; however, an inverse correlation was found between the length of time since vaccination and serological status. Animals between 90 and 180 days post-vaccination were more likely to be positive than animals greater than 180 days post-vaccination. Our results show that a commercial CPPV ELISA kit is a robust and reliable assay for post-CPPV vaccination surveillance in resource-restricted settings and provide temporal parameters to be considered when planning sheeppox post-vaccination monitoring programmes.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Immunity, Humoral , Poxviridae Infections/epidemiology , Poxviridae Infections/prevention & control , Poxviridae Infections/veterinary , Sensitivity and Specificity , Sheep , Sheep Diseases/epidemiology
20.
Gene ; 810: 146085, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34843879

ABSTRACT

Sheeppox virus (SPPV) is responsible for a significant economic loss to sheep husbandry in enzootic regions of Africa, the Middle East, and Asia including the Indian subcontinent. In this study, we present the complete genome sequence of SPPV vaccine strain SPPV-Srin38/00 from India determined by next-generation sequencing (NGS) using Illumina technology. The attenuated Srinagar vaccine strain of SPPV (SPPV-Srin38/00) was developed by serial passaging the virus initially in lamb testes (LT) cells followed by Vero cell line. The SPPV-Srin38/00 virus has a genome size of 150, 103 bp, which encodes for 147 functional putative genes and consists of a central coding region flanked by two identical 2353 bp inverted terminal repeats (ITRs). Comparative phylogenetic analysis based on complete genome sequences of Capripoxviruses formed three distinct groups each for SPPV, GTPV, and LSDV with clustering of SPPV-Srin38/00 strain with SPPV-A strain. Nine ORFs of SPPV-Srin38/00 namely SPPV-Srin_002/SPPV-Srin_155, SPPV-Srin_004/SPPV-Srin_153, SPPV-Srin_009, SPPV-Srin_013, SPPV-Srin_026, SPPV-Srin_132, and SPPV-Srin_136 were found to be fragmented as compared to LSDV, whereas only one ORF (such as SPPV-Srin_136) was found to be fragmented as compared to GTPV. SPPV genomes, including the SPPV-Srin38/00 strain, shared 99.78-99.98% intraspecies nucleotide identity, indicating that SPPV strains have extremely low genetic diversity. The strain shared 96.80-97.08% and 97.11-97.61% nt identity with GTPV and LSDV strains, respectively. Its ORFs 016, 021, 022, 130 and 138 are the least identical ORFs among three species of the genus Capripoxvirus with 72.5-93% aa identity to GTPV and LSDV strains and may be potentially used for differentiation of CaPV species. This study may contribute to a better understanding of the epidemiology and evolution of capripoxviruses as well as the development of specific detection methods, better expression vectors, and vaccines with improved safety and efficacy.


Subject(s)
Capripoxvirus/genetics , Animals , Capripoxvirus/classification , Chlorocebus aethiops , Genome Size , High-Throughput Nucleotide Sequencing , Open Reading Frames , Sheep , Sheep Diseases/virology , Vero Cells , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL