Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
Foods ; 13(19)2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39410055

ABSTRACT

(1) Background: Cultivating microgreens is emerging as an excellent market opportunity. Their easy, short, and sustainable production methods are the main reasons they are approved by growers. However, a feature that still prevents its further spread is the microbiological risk and their rapid senescence. The present study was conducted to evaluate the post-harvest storage and shelf life of arugula microgreens in different packaging through microbiological, physico-chemical, and sensory parameters; (2) Methods: Plants were stored at 5 °C in open air, vacuum sealed, and under modified atmosphere bags and tested at 0, 3, 5, 7, and 10 days; (3) Results: Microgreens stored in all packaging were safe for consumption within ten days. Regarding physical and chemical parameters, open packaging proved to be promising, with less weight loss and slower chlorophyll degradation. The sensory analysis demonstrated that the microgreens stored in the vacuum-sealed packaging showed a decrease in quality from the fifth day onwards for all attributes. However, the MAP presented good scores with a better visual quality, similar to the fresh microgreens.

2.
Foods ; 13(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39272609

ABSTRACT

The freshness of raw fish has become one of the industry's and consumers' main concerns regarding quality, safety, and shelf-life estimation. To determine the freshness of the king weakfish (Macrodom ancylodom), the quality index method (QIM) was employed for sensory analyses, along with the assessment of proximate composition, pH, total volatile bases (TVB-N), thiobarbituric acid reactive substances (TBARS), biogenic amines, fatty acids, texture, and microbiological parameters. The results show that the QIM obtained over the storage period exhibited a linear increase, ranging from 2 to 21 demerit points, with a high correlation (R2 = 0.9868) among the data. The microbiological results indicated an increase in the counts of psychrotrophic and mesophilic bacteria throughout the storage period. TVB-N values ranged from 11 to 28 mg/100 g, and TBARS values ranged from 0.235 to 0.298 mg MDA/kg when stored in ice. The presence of putrescine, cadaverine, spermidine, and toxic volatile compounds was a potential indicator of fish freshness. Based on the correlation between the methods considered indicators of freshness and quality, it can be concluded that the king weakfish maintains its commercial stability for up to 11 days when stored in ice.

3.
Foods ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39063253

ABSTRACT

Plant-based milk has gained considerable attention; however, its high nutritional variation highlights the need for improved formulation designs to enhance its quality. This study aimed to nutritionally compare cow milk with plant-based milk produced from hazelnuts (H), Brazil nuts (BN), cashew nuts (CN), soybeans (S), and sunflower seeds (SS), and to perform physicochemical and technological characterization. The plant-based milk produced with isolated grains showed a nutritional composition inferior to that of cow milk in almost all evaluated parameters, protein content (up to 1.1 g 100 g-1), lipids (up to 2.7 g 100 g-1), color parameters, minerals, and especially calcium (up to 62.4 mg L-1), which were originally high in cow milk (up to 1030 mg L-1). However, the plant-based milk designed using a blend composition was able to promote nutritional enhancement in terms of minerals, especially iron (Fe) and magnesium (Mg), high-quality lipids (up to 3.6 g 100 g-1), and carbohydrates (3.4 g 100 g-1 using CN, BN, and S). The protein content was 1.3% compared to 5.7 in cow milk, and the caloric value of plant-based milk remained 32.8 at 52.1 kcal, similar to cow milk. Satisfactory aspects were observed regarding the shelf life, especially related to microbiological stability during the 11 d of storage at 4 °C. For the designed plant-based milk to be equivalent to cow milk, further exploration for optimizing the blends used to achieve better combinations is required. Furthermore, analyzing possible fortification and preservation methods to increase shelf life and meet the nutritional and sensory needs of the public would be interesting.

4.
Food Res Int ; 189: 114482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876611

ABSTRACT

The potential biopreservative role of a Type III sourdough (tIII-SD), produced by starter cultures of Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum ATCC 8014, was assessed for its antifungal activity in baking applications. Fermentation was carried out using different substrates to enhance the production of antifungal metabolites for 24 and 48 h. The tIII-SD samples were analyzed in relation to pH, total titratable acidity (TTA) and the production of organic acids. The water/salt-soluble extract of the tIII-SD was evaluated in relation to the inhibition potential against key fungi that contaminate bakery products including Penicillium roqueforti, Penicillium chrysogenum and Aspergillus niger. Finally, breads with 10 % of the tIII-SD were prepared and the fungi contamination was evaluated throughout the shelf life period. The lowest pH value in sourdough was obtained from 48-hour fermentation by L. plantarum. The saline extracts exhibited varying degrees of inhibition in the in vitro test; however, the greatest enhancement of this effect was obtained when whole wheat grain flour was used. The tIII-SD crafted from a blend of wheat and flaxseed flours and fermented with F. sanfranciscensis for 48 h (BSWF48h-FS), demonstrated superior performance compared to other formulations. This variant exhibited a total shelf life of 10 days, suggesting that the utilization of tIII-SD could serve as a viable alternative for natural antifungal agents, proving beneficial for the bakery industry.


Subject(s)
Antifungal Agents , Bread , Fermentation , Food Microbiology , Bread/microbiology , Bread/analysis , Antifungal Agents/pharmacology , Aspergillus niger/drug effects , Penicillium/drug effects , Hydrogen-Ion Concentration , Flour/analysis , Food Preservation/methods , Triticum/chemistry , Triticum/microbiology , Penicillium chrysogenum , Lactobacillus plantarum/metabolism
5.
Biopolymers ; 115(5): e23601, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38779866

ABSTRACT

Starch-based films offer the advantages of biodegradability, edibility, barrier properties, flexibility, and adaptability. This study compared the physicochemical properties of starch-based films by adding raw fish collagen and hydroxypropylmethylcellulose (HPMC). The tensile properties were evaluated, and the interaction with water was analyzed. Barrier properties, such as water vapor and oxygen permeability, were examined, and optical properties, such as gloss and good internal transmittance, were evaluated. The films were evaluated as coatings on Andean blackberries (Rubus glaucus Benth) for 2 weeks at 85% RH and 25°C. The results showed that the inclusion of collagen caused a reduction in the tensile strength and elastic modulus of the films. Also, the formulation with the highest collagen concentration (F7) exhibited the lowest weight loss and water vapor permeability, also it had the highest collagen concentration and showed the highest reduction in Xw and WAC, with values of 0.048 and 0.65 g water/g dry film, respectively. According to analyzing the optical properties, F1 presented the highest bright-ness and transmittance values, with 18GU and 82 nm values, respectively. In general, the films and coatings are alternatives to traditional packaging materials to prolong the shelf life of these fruits.


Subject(s)
Collagen , Hypromellose Derivatives , Permeability , Rubus , Starch , Tensile Strength , Collagen/chemistry , Rubus/chemistry , Starch/chemistry , Hypromellose Derivatives/chemistry , Animals , Food Packaging , Steam
6.
Polymers (Basel) ; 16(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611145

ABSTRACT

Red propolis is an active ingredient of great nutritional interest which offers numerous benefits as an antioxidant and antimicrobial agent. Thus, the objective of this research was to evaluate the application of an edible and antimicrobial gelatine coating containing red propolis to increase the shelf life of grapes. Gelatine films with an addition of 5, 10, 15, 20 and 25% of red propolis extract were produced to evaluate their antimicrobial activity using the disk diffusion test in solid media. The films with 25% red propolis extract showed antimicrobial activity against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The grapes were coated with pure gelatine, without a plasticizer and with gelatine with 25% red propolis and then stored for 1, 4, 10, 19 and 25 days at temperatures of 25 °C and 5 °C. The results showed that the gelatine coating with propolis reduced the mass loss of grapes stored at 25 °C for 19 days by 7.82% and by 21.20% for those kept at 5 °C for 25 days. The pH, total titratable acidity, soluble solids and color of the grapes increased due to the ripening process. Furthermore, the sensory acceptability indexes of the refrigerated grapes with coatings were superior (>78%) to those of the control samples (38%), proving the effectiveness of the coatings in maintaining the quality of grapes during storage.

7.
Foods ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38540814

ABSTRACT

Fresh blueberries are delicate, hand-picked, packaged, and refrigerated fruits vulnerable to spoilage and contamination. Cold atmospheric plasma (CAP) is a promising antimicrobial technology; therefore, this study evaluated the CAP treatment effect on acid-tolerant Listeria innocua and Listeria monocytogenes and evaluated changes in the quality of the treated fruit. Samples were spot-inoculated with pH 5.5 and 6.0 acid-adapted Listeria species. Samples were treated with gliding arc CAP for 15, 30, 45, and 60 s and evaluated after 0, 1, 4, 7, and 11 days of storage at 4 °C and 90% humidity for the following quality parameters: total aerobic counts, yeast and molds, texture, color, soluble solids, pH, and titratable acidity. CAP treatments of 30 s and over demonstrated significant reductions in pathogens under both the resistant strain and pH conditions. Sixty-second CAP achieved a 0.54 Log CFU g-1 reduction in L. monocytogenes (pH 5.5) and 0.28 Log CFU g-1 for L. monocytogenes (pH 6.0). Yeast and mold counts on day 0 showed statistically significant reductions after 30, 45, and 60 s CAP with an average 2.34 Log CFU g-1 reduction when compared to non-CAP treated samples. Quality parameters did not show major significant differences among CAP treatments during shelf life. CAP is an effective antimicrobial treatment that does not significantly affect fruit quality.

8.
Polymers (Basel) ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543458

ABSTRACT

It is known that ethylene plays an important role in the quality characteristics of fruits, especially in storage. To avoid the deterioration of fruits caused by ethylene, titanium dioxide (TiO2) has been used due to its photocatalytic capacity. The aim of this study was to develop films based on two types of biopolymers, Mater-Bi (MB) and poly-lactic acid (PLA), with nanoparticles of TiO2 and to determine their ethylene removal capacity and its application in bananas. First, the films were fabricated through an extrusion process with two different concentrations of TiO2 (5 and 10% w/w). Then, the films were characterized by their structural (FTIR), morphological (SEM), thermal (DSC and TGA), dynamic (DMA), barrier, and mechanical properties. The ethylene removal capacities of the samples were determined via gas chromatography and an in vivo study was also conducted with bananas for 10 days of storage. Regarding the characterization of the films, it was possible to determine that there was a higher interaction between PLA with nano-TiO2 than MB; moreover, TiO2 does not agglomerate and has a larger contact surface in PLA films. Because of this, a higher ethylene removal was also shown by PLA, especially with 5% TiO2. The in vivo study also showed that the 5% TiO2 films maintained their quality characteristics during the days in storage. For these reasons, it is possible to conclude that the films have the capacity to remove ethylene. Therefore, the development of TiO2 films is an excellent alternative for the preservation of fresh fruits.

9.
Int J Food Microbiol ; 415: 110645, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430687

ABSTRACT

This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (µmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √µ = 0.016 (T + 10.13) and √µ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.


Subject(s)
Bacteria , Pseudomonas , Animals , Gas Chromatography-Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Temperature , Food Microbiology , Food Preservation , Colony Count, Microbial , Food Storage
10.
Heliyon ; 10(3): e25115, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317964

ABSTRACT

This study aimed to evaluate the postharvest characteristics of edible fresh white shimeji mushrooms under different UV-C radiation doses. The experimental design used was fully randomized, in a 5 × 8 factorial scheme (UV-C radiation dose: 0 (control), 1, 2, 3, and 4 kJ m-2 x day of analysis), with 3 replications of 70 ± 1 g mushrooms each. After exposure to different doses, they were stored at 2 ± 0.5 °C and 60 ± 3.8 % RH. Data were subjected to permutational multivariate analysis (PERMANOVA) (p ≤ 0.05). There was no significance for interaction, nor the factor day, only for the UV-C radiation doses factor. Regarding PCA, among the doses applied, the dose of 2 kJ m-2 was effective in maintaining the quality of mushrooms with greater lightness, greater whiteness index, a greater amount of total extractable polyphenols, and total antioxidant activity. In conclusion, the dose of 2 kJ m-2 was effective in maintaining the postharvest quality of white shimeji mushrooms.

11.
Meat Sci ; 211: 109443, 2024 May.
Article in English | MEDLINE | ID: mdl-38340686

ABSTRACT

This study aimed to evaluate the use of freezing/thawing as a way of accelerating the aging processes of beef from Nellore animals. Non-frozen (NF) or freezing/thawing (FT) strip loins were aged (for 14 and 28 days) using two systems: bone-in dry-aging (DA); boneless wet-aging (WA). FT-treated samples had greater weight losses (P < 0.05) during aging than NF-treated samples, especially using the DA process. However, the weight loss of the FT 14-days DA beef samples was comparable to that of NF 28-days DA. FT beef had lower fragmentation index and shear force values (P < 0.05), as well as its maximum sensorial tenderness was achieved earlier (P < 0.05) than the NF counterpart. With 28 days of aging, DA beef showed higher (P < 0.05) tenderness and juiciness scores and lower lightness values than WA beef. The FT process decreased the reducing capacity of meat samples, generating more metmyoglobin and lower amounts of chroma than NF. The expected volatile profile of DA beef was achieved faster in FT-treated samples, but the freezing treatments did not compromise the microbial count for either aging system. Our findings indicate that accelerated DA by the FT process could improve the palatability of Nellore beef, allowing the desired tenderness and flavor profile to be achieved in a shorter time, without increasing costs with weight losses or adversely affecting physicochemical, chemical, and microbial characteristics.


Subject(s)
Food Handling , Red Meat , Animals , Cattle , Freezing , Meat/analysis , Red Meat/analysis , Weight Loss
12.
World J Microbiol Biotechnol ; 40(4): 115, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418714

ABSTRACT

This study aimed to evaluate the use of palm kernel meal (PKM) in the traditional solid-state fermentation system to improve the production and quality of Cordyceps javanica conidia. The impact of PKM was determined by measuring conidia yield, viability, hydrophobicity, shelf life, and conidia pathogenicity against Diaphorina citri adults. By supplementing rice grains with 5% palm kernel meal increased the conidial yield by up to 40%, without compromising conidia viability and hydrophobicity. In addition, conidia caused higher levels of mortality by mycosis against D. citri adults (90%), relative to conidia harvested from rice (52%). The conidia recovered from rice/palm kernel meal mixtures also retained viability greater than 90% after storage for 10 months at 4 °C, while the conidia produced on rice reached 80%. Thus, conidia produced in the presence of palm kernel meal can be consumed immediately or in the medium term. Some process advantages of the palm kernel meal as co-substrate in the traditional production system of C. javanica are also mentioned. These results are attractive for improving the mycoinsecticide production process, with excellent cost-benefit and minimal changes in infrastructure and process.


Subject(s)
Cordyceps , Hemiptera , Animals , Spores, Fungal
13.
J Food Sci ; 89(1): 552-565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078775

ABSTRACT

Although ultraviolet-C light-emitting diode (UVC-LED) has proven antimicrobial effectiveness doses needed to reach it cause adverse effects on the physicochemical quality of fish, and thus, optimization studies are crucial to boost its industrial application. This study aimed to identify optimal UVC-LED conditions for maximum shelf life extension with the least possible quality changes of refrigerated stored tilapia fillets from a central composite rotatable design (CCRD). UVC-LED powers (1, 1.38, and 1.58 mW/cm2 ) and times (500, 1800, and 2700 s) were set on the CCRD, which generated 11 treatments, including three replicate experiments. Treatments were analyzed for total aerobic psychrotrophic count, lipid oxidation, instrumental color, and texture parameters on days 0, 2, 4, 7, 11, and 14. The UVC-LED affected shelf life and physicochemical parameters in a nonlinear fashion. UVC-LED-treated fish had increased shelf life by 2.80-4.76 days and increase or decrease in lipid oxidation (0.025-0.276 mg of malondialdehyde [MDA]/kg), total color change (∆E = 3.47-9.06), and hardness (1.31-8.51 N) over the refrigerated storage depending on specific UVC-LED conditions applied. The optimal UVC-LED condition was 0.97 mW/cm2 with 2503.6 s (2428.50 mJ/cm2 ), which increased the fillet's shelf life by 2.5-fold (2 days) while maintaining quality closer to the original throughout refrigerated storage, resulting in ∆E < 5, an increase of only 0.05 mg of MDA/kg, and preservation of the decrease in hardness by 3.38 N compared to its control counterparts. Therefore, it represents an eco-friendly technology that can easily scaled industrially to enhance the sustainable fish production chain. PRACTICAL APPLICATION: The high fish perishability is a global concern due to food safety risks and waste generation impacting the environment adversely, especially nowadays, where fish production and consumption have increased, and there are more evident efforts to sustainable production. UVC-LED is an eco-friendly technology with proven antimicrobial effectiveness but doses needed to reach this effect enhance oxidative degradation. Despite that, optimization studies concerning the maximum shelf life extension while retaining the physicochemical quality of refrigerated stored fish are a gap in the literature and a barrier to its industrial application. Our findings are helpful in sustainably enhancing the fish production chain.


Subject(s)
Anti-Infective Agents , Cichlids , Animals , Food Preservation/methods , Vacuum , Lipids
14.
Poult Sci ; 103(1): 103153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931395

ABSTRACT

The aim of this study was to examine the effects of frozen storage for 12 mo on the concentrations of lipids and cholesterol and fatty acid profile of wooden chicken breast meat. A total of 120 samples of chicken breasts were selected, according to the degree of "wooden breast" myopathy ["severe," "moderate," and "normal" (absence of myopathy)], from male chickens slaughtered at 42 d of age, from Cobb 500 strain. Part of the samples (n = 20/grade of severity) were evaluated on the day of collection and the remainder were packaged, frozen and stored at -18°C for up to 12 mo. At the beginning (collection day) and at the end of the proposed freezing period (12 mo), analyses of lipid, cholesterol, and fatty acid profile were carried out. Percentage of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids were evaluated. Meats affected by wooden breast myopathy had lower levels of PUFA that exert beneficial effects on health, such as DHA, EPA and ARA, and this profile is impaired by prolonged storage (12 mo), which results in important nutritional losses for the consumer.


Subject(s)
Fatty Acids , Muscular Diseases , Animals , Male , Fatty Acids/analysis , Chickens , Freezing , Fatty Acids, Unsaturated , Cholesterol/analysis , Meat/analysis , Muscular Diseases/etiology , Muscular Diseases/veterinary
15.
Braz J Microbiol ; 55(1): 737-748, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38008804

ABSTRACT

Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.


Subject(s)
Bacillus , Phosphates , Phosphates/metabolism , Bacillus/metabolism , Plant Roots/microbiology , Phosphorus/metabolism , Bacillus subtilis/metabolism , Soil , Zea mays/microbiology
16.
Food Sci Technol Int ; 30(6): 583-591, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38124304

ABSTRACT

The objective of this work was to develop two freeze-dried snacks from blackcurrant and different sweeteners: honey/isomalt (HI) sweetened with honey/isomalt, and isomalt/stevia (IS) sweetened with isomalt/stevia. Both snacks showed high bioactive compounds retention (>75%) and no significant changes in several physicochemical properties after 6 months storage. Fresh snacks were hard and crunchy, and the perception of consumers within liking categories was: HI: 43%, and IS: 72%. After storage HI snack showed higher acceptance by consumers (75% within liking categories) while IS snack showed a decrease in their acceptance (63% within disliking categories). The penalty analysis showed that the sensory shelf-life of both snacks would be limited by the changes produced in texture and color during storage. HI snack could reach six storage months, while IS would be stored up to 3 months. The use of diverse sweeteners allowed obtaining two different products which could be incorporated into a healthy diet.


Subject(s)
Food Storage , Freeze Drying , Ribes , Snacks , Sweetening Agents , Taste , Ribes/chemistry , Humans , Consumer Behavior , Honey/analysis , Stevia/chemistry , Color , Adult , Female
17.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834129

ABSTRACT

Strawberries are a rich source of vitamins and antioxidants, among other nutrients, but they are highly susceptible to mechanical injuries, dehydration, and microbial spoilage, and thus have a limited post-harvest shelf-life. Bioactive edible coatings have been studied to decrease or prevent these damages. In this study, ethanolic extracts of Arrayan (Luma apiculata), a traditional berry from the south of Chile, were used to enrich a chitosan-based edible film and coat fresh strawberries. A long-term storage (10 °C) study was conducted to determine the strawberries' weight loss, microbial stability, fruit firmness impact, and antioxidant activity. Later, a sensory panel was conducted to determine overall consumer acceptance. Our results show that the bioactive coating inhibited the growth of different pathogenic bacteria and spoilage yeast. In the stored strawberries, the weight loss was significantly lower when the bioactive coating was applied, and the samples' firmness did not change significantly over time. Microbial growth in the treated strawberries was also lower than in the control ones. As expected, the antioxidant activity in the coated strawberries was higher because of the Arrayan extract, which has high antioxidant activity. Regarding sensory qualities, the covered strawberries did not show significant differences from the uncoated samples, with an overall acceptance of 7.64 on a 9-point scale. To our knowledge, this is the first time an edible coating enriched with Arrayan extracts has been reported as able to prevent strawberries' decay and spoilage.


Subject(s)
Chitosan , Fragaria , Humans , Antioxidants/pharmacology , Food Preservation/methods , Chitosan/pharmacology , Fruit/microbiology , Weight Loss
18.
Heliyon ; 9(6): e16969, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37426794

ABSTRACT

Goldenberry has great potential for the development of high-quality products due to its attractive sensory attributes, bioactive compounds, and health benefits. However, postharvest losses are high due to the lack of processing technologies that can both be adapted to rural conditions in producing countries to generate high-quality products. Flash vacuum expansion coupled with vacuum pulping is a new process that can meet these requirements. In the process, the steam holding time (30, 40, and 50 s/130 kPa) and flash vacuum expansion (5 ± 1.2 kPa) were studied. The logarithmic reduction of microbial load and some quality indicators were analyzed during the process and during storage to assess the shelf life of fruit purées. The FVE process with 40 s steam blanching led to a microbial reduction of over 6 log colony forming units (CFU)/g, increased yield and ß-carotene content, and preserved most of the AA content (4-12%). Based on the half-lives of the quality indicators, the shelf life of the purées was between 16 d (20 °C) and 90 d (4 °C). The energy consumption was estimated at approximately 0.30 kWh/kg of product. These results demonstrate that the FVE process, although it includes heat treatment, allows a short exposure to heat of the whole fruits to obtain a high-quality puree with an adequate shelf life in a single step, with a relatively low equipment investment and moderate energy consumption.

19.
Heliyon ; 9(6): e17071, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383206

ABSTRACT

The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.

20.
Rev. chil. nutr ; 50(3)jun. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1515185

ABSTRACT

Minimally processed strawberries have high acceptability but a short shelf life. The application of edible coatings with essential oils may be an alternative to preserve these fruits. Our objective was to develop, apply and characterize the effect of bioactive edible coatings based on agar or sodium alginate with thyme and/or sweet orange essential oils with antimicrobial properties, mainly against Listeria monocytogenes, for strawberries. The effect of the coatings on the physicochemical, microbiological, and sensory properties that determine the shelf life of strawberries was verified at 1, 8, and 15 days. The effect against Listeria monocytogenes bacteria in strawberries artificially contaminated with this microorganism was also evaluated. Thyme and sweet orange essential oils had thymol and D-limonene, respectively, as main components. Alginate coating with sweet orange and thyme essential oil showed the best results. For Listeria monocytogenes, the coating applied after fruit contamination had an antimicrobial effect.


Las fresas mínimamente procesadas tienen una alta aceptación, pero una vida útil corta. La aplicación de recubrimientos comestibles con aceites esenciales puede ser una alternativa para conservar estos frutos. El objetivo fue desarrollar, aplicar y caracterizar el efecto del uso de recubrimientos comestibles bioactivos, a base de agar agar o alginato de sodio, adicionados con aceites esenciales de tomillo y/o naranja dulce, con propiedades antimicrobianas, principalmente anti-Listeria monocytogenes sobre la fresa. Se verificó el efecto de los recubrimientos sobre las características fisicoquímicas, microbiológicas y sensoriales que determinan la vida útil de las fresas a 1, 8 y 15 días. También se evaluó el efecto contra la bacteria Listeria monocytogenes en fresas contaminadas artificialmente con este microorganismo. Los aceites esenciales de tomillo y naranja dulce presentaron timol y D-limoneno como compuestos mayoritarios, respectivamente. El recubrimiento de alginato con aceite esencial de naranja dulce y tomillo mostró los mejores resultados. Para Listeria monocytogenes, el recubrimiento aplicado después de la contaminación de la fruta tuvo un efecto antimicrobiano.

SELECTION OF CITATIONS
SEARCH DETAIL