Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791117

ABSTRACT

Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR. Methicillin-resistant Staphylococcus aureus (MRSA) strains, a pathogen considered of high priority by the World Health Organization, have proven to be resistant to most of the actual antimicrobial treatments. Therefore, new treatments are required to be able to manage this increasing threat. Under this perspective, an important metabolic pathway for MRSA survival, and absent in mammals, is the shikimate pathway, which is involved in the biosynthesis of chorismate, an intermediate for the synthesis of aromatic amino acids, folates, and ubiquinone. Therefore, the enzymes of this route have been considered good targets to design novel antibiotics. The fifth step of the route is performed by shikimate kinase (SK). In this study, an in-house chemical library of 170 benzimidazole derivatives was screened against MRSA shikimate kinase (SaSK). This effort led to the identification of the first SaSK inhibitors, and the two inhibitors with the greatest inhibition activity (C1 and C2) were characterized. Kinetic studies showed that both compounds were competitive inhibitors with respect to ATP and non-competitive for shikimate. Structural analysis through molecular docking and molecular dynamics simulations indicated that both inhibitors interacted with ARG113, an important residue involved in ATP binding, and formed stable complexes during the simulation period. Biological activity evaluation showed that both compounds were able to inhibit the growth of a MRSA strain. Mitochondrial assays showed that both compounds modify the activity of electron transport chain complexes. Finally, ADMETox predictions suggested that, in general, C1 and C2 can be considered as potential drug candidates. Therefore, the benzimidazole derivatives reported here are the first SaSK inhibitors, representing a promising scaffold and a guide to design new drugs against MRSA.


Subject(s)
Benzimidazoles , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Phosphotransferases (Alcohol Group Acceptor) , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Kinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Dynamics Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Humans , Microbial Sensitivity Tests , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
2.
Altern Lab Anim ; 52(1): 10-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38095084

ABSTRACT

Over the last decade, Mycobacterium tuberculosis has mutated into a putative 'superbug', as treatments against it have failed due to increasing antimicrobial resistance. As a result, the rising incidence of multidrug-resistant tuberculosis (MDR-TB) is posing a significant public health threat, thus, the need to develop effective drugs for MDR-TB has become an urgent priority. To identify new drug candidates for the treatment of MDR-TB, the present study was based on mycobacterial shikimate kinase (MtSK) as the pharmacological target. One hundred potential MtSK inhibitors were identified from literature and database searches to identify compounds that were designed to specifically function as MtSK antagonists. The ADME properties of these compounds were evaluated by using the SwissADME web tool. ProTox-II software was also used to investigate any potential endocrine disrupting effects, mediated through their interaction with oestrogenic and/or androgenic receptors. This study also aimed to predict LD50 values of potential drug candidates that would be active against the standard H37Rv strain of M. tuberculosis, by using the ProTox-II in silico tool. The molecules for which no structural hazard alerts were identified with these software tools were further subjected to molecular docking analyses and molecular dynamic simulations to estimate their ability to interact with the MtSK enzyme. Preliminary results from SwissADME indicated that 30 molecules were drug-like, due to their physicochemical and pharmacokinetic properties. However, subsequent analysis with ToxTree and ProTox-II indicated that only three of these 30 drug-like molecules were suitable for taking forward into further in vitro experiments. This study, which is based on the use of commonly used open-source in silico tools, identified new MtSK ligands for potential use in the development of new drugs for the therapeutic management of tuberculosis. An initial prediction of their safety profile was also generated.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Molecular Docking Simulation , Protoporphyrinogen Oxidase , Tuberculosis/drug therapy
3.
Tuberculosis (Edinb) ; 141: 102362, 2023 07.
Article in English | MEDLINE | ID: mdl-37311288

ABSTRACT

The development of new anti-TB drugs to prevent the spread of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is imperative. Mtb shikimate kinase (MtSK) was selected as the target protein to screen for new anti-TB drugs. We performed hierarchical in silico screening using a library of 154,118 compounds to search for novel compounds that could bind to the active site of MtSK. The growth-inhibitory effects of the candidate compounds on Mycobacterium smegmatis were evaluated in vitro. Nine of the 11 candidate compounds exhibited inhibitory effects against mycobacteria in vitro. The inhibitory activity of Compound 2 (IC50 = 1.39 µM) was higher than that of isoniazid, the first-line drug for TB treatment. Moreover, Compound 2 did not exhibit toxicity against mammalian cells and Escherichia coli. Molecular dynamics simulations using the MtSK-Compound 2 complex structure in a timeframe of 100 ns suggested that Compound 2 could stably bind to MtSK. The binding free energy of Compound 2 was estimated to be -37.96 kcal/mol using the MM/PBSA method, demonstrating that Compound 2 can stably bind to MtSK. These in silico and in vitro results indicated that Compound 2 is a promising hit compound for the development of novel anti-TB drugs.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/metabolism , Drug Evaluation, Preclinical , Tuberculosis/drug therapy , Molecular Docking Simulation , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Mammals/metabolism
4.
Metabolites ; 13(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37367905

ABSTRACT

Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.

5.
J Biomol Struct Dyn ; 41(23): 14582-14598, 2023.
Article in English | MEDLINE | ID: mdl-36974959

ABSTRACT

Tuberculosis is a highly infectious disease other than HIV/AIDS and it is one of the top ten causes of death worldwide. Resistance development in the bacteria occurs because of genetic alterations, and the molecular insights suggest that the accumulation of mutation in the individual drug target genes is the primary mechanism of multi-drug resistant tuberculosis. Chorismate is an essential structural fragment for the synthesis of aromatic amino acids and synthesized biochemically by a number of bacteria, including Mycobacterium tuberculosis, utilizing the shikimate pathway. This shikimate kinase is the newer possible target for the generation of novel antitubercular drug because this pathway is expressed only in mycobacterium and not in Mammals. The discovery and development of shikimate kinase inhibitors provide an opportunity for the development of novel selective medications. Multiple shikimate kinase inhibitors have been identified via insilico virtual screening and related protein-ligand interactions along with their in-vitro studies. These inhibitors bind to the active site in a similar fashion to shikimate. In the current review, we present an overview of the biology and chemistry of the shikimate kinase protein and its inhibitors, with special emphasis on the various active scaffold against the enzyme. A variety of chemically diversified synthetic scaffolds including Benzothiazoles, Oxadiazoles, Thiobarbiturates, Naphthoquinones, Thiazoleacetonitriles, Hybridized Pyrazolone derivatives, Orthologous biological macromolecule derivatives, Manzamine Alkaloids derivatives, Dipeptide inhibitor, and Chalcones are discussed in detail. These derivatives bind to the specific target appropriately proving their potential ability through different binding interactions and effectively explored as an effective and selective Sk inhibitor.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Shikimic Acid , Animals , Shikimic Acid/metabolism , Shikimic Acid/pharmacology , Antitubercular Agents/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Enzyme Inhibitors/chemistry , Mammals/metabolism
6.
Curr Drug Targets ; 24(5): 388-405, 2023.
Article in English | MEDLINE | ID: mdl-36752299

ABSTRACT

Humanity has been battling with tuberculosis (TB) for a long period, and despite the availability of drugs well-known to act against the deadly microbe, the menace is still very far from reaching its end. Moreover, problems related to TB chemotherapy, such as lengthy treatment periods leading to poor patient compliance, increasing drug resistance, and association with another deadlier disease HIV-AIDS, make the situation alarming, thereby pressing the need for the discovery of new potent drugs urgently. Therefore, a drug target that is essential for survival and exclusive to M. tuberculosis presents a promising platform to explore novel molecules against the microorganism for better pathogen clearance with minimal toxicity. The shikimate pathway that leads to the synthesis of essential aromatic amino acids is one such attractive target. Shikimate kinase, the fifth enzyme of this pathway, converts shikimate to shikimate-3-phosphate by using ATP as a cosubstrate. Targeting shikimate kinase could be an effective strategy in light of its essentiality and absence of any homologue in mammals. This review discusses different strategies adopted for discovering novel compounds or scaffolds targeting M. tuberculosis shikimate kinase (MtSK) in vitro. The application of substrate analogues, their structure, and ligand-based approach for screening a library of anti-mycobacterial compounds, marine-derived molecules, and commercially available libraries have yielded promising MtSK inhibitors exhibiting micro-molar activities. To develop these leads into future drugs with minimum off-target effects on the host microenvironment, the molecules need to be structurally optimized for improved activities against enzymes and whole-cell organisms.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/chemistry , Enzyme Inhibitors/pharmacology , Mammals
7.
J Comput Aided Mol Des ; 37(3): 117-128, 2023 03.
Article in English | MEDLINE | ID: mdl-36547753

ABSTRACT

Tuberculosis (TB) is one of the main causes of death from a single pathological agent, Mycobacterium tuberculosis (Mtb). In addition, the emergence of drug-resistant TB strains has exacerbated even further the treatment outcome of TB patients. It is thus needed the search for new therapeutic strategies to improve the current treatment and to circumvent the resistance mechanisms of Mtb. The shikimate kinase (SK) is the fifth enzyme of the shikimate pathway, which is essential for the survival of Mtb. The shikimate pathway is absent in humans, thereby indicating SK as an attractive target for the development of anti-TB drugs. In this work, a combination of in silico and in vitro techniques was used to identify potential inhibitors for SK from Mtb (MtSK). All compounds of our in-house database (Centro de Pesquisas em Biologia Molecular e Funcional, CPBMF) were submitted to in silico toxicity analysis to evaluate the risk of hepatotoxicity. Docking experiments were performed to identify the potential inhibitors of MtSK according to the predicted binding energy. In vitro inhibitory activity of MtSK-catalyzed chemical reaction at a single compound concentration was assessed. Minimum inhibitory concentration values for in vitro growth of pan-sensitive Mtb H37Rv strain were also determined. The mixed approach implemented in this work was able to identify five compounds that inhibit both MtSK and the in vitro growth of Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Molecular Docking Simulation , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Tuberculosis/drug therapy
8.
Front Bioeng Biotechnol ; 10: 1005960, 2022.
Article in English | MEDLINE | ID: mdl-36204466

ABSTRACT

2-Phenylethanol (2-PE) is a rose-scented aromatic compound, with broad application in cosmetic, pharmaceutical, food and beverage industries. Many plants naturally synthesize 2-PE via Shikimate Pathway, but its extraction is expensive and low-yielding. Consequently, most 2-PE derives from chemical synthesis, which employs petroleum as feedstock and generates unwanted by products and health issues. The need for "green" processes and the increasing public demand for natural products are pushing biotechnological production systems as promising alternatives. So far, several microorganisms have been investigated and engineered for 2-PE biosynthesis, but a few studies have focused on autotrophic microorganisms. Among them, the prokaryotic cyanobacteria can represent ideal microbial factories thanks to their ability to photosynthetically convert CO2 into valuable compounds, their minimal nutritional requirements, high photosynthetic rate and the availability of genetic and bioinformatics tools. An engineered strain of Synechococcus elongatus PCC 7942 for 2-PE production, i.e., p120, was previously published elsewhere. The strain p120 expresses four heterologous genes for the complete 2-PE synthesis pathway. Here, we developed a combined approach of metabolite doping and metabolic engineering to improve the 2-PE production kinetics of the Synechococcus elongatus PCC 7942 p120 strain. Firstly, the growth and 2-PE productivity performances of the p120 recombinant strain were analyzed to highlight potential metabolic constraints. By implementing a BG11 medium doped with L-phenylalanine, we covered the metabolic burden to which the p120 strain is strongly subjected, when the 2-PE pathway expression is induced. Additionally, we further boosted the carbon flow into the Shikimate Pathway by overexpressing the native Shikimate Kinase in the Synechococcus elongatus PCC 7942 p120 strain (i.e., 2PE_aroK). The combination of these different approaches led to a 2-PE yield of 300 mg/gDW and a maximum 2-PE titer of 285 mg/L, 2.4-fold higher than that reported in literature for the p120 recombinant strain and, to our knowledge, the highest recorded for photosynthetic microorganisms, in photoautotrophic growth condition. Finally, this work provides the basis for further optimization of the process aimed at increasing 2-PE productivity and concentration, and could offer new insights about the use of cyanobacteria as appealing microbial cell factories for the synthesis of aromatic compounds.

9.
Chem Biol Drug Des ; 100(2): 230-244, 2022 08.
Article in English | MEDLINE | ID: mdl-35434882

ABSTRACT

The issue of emerging resistance to antitubercular drugs has created a formidable barrier in the effective prevention and cure of tuberculosis globally. In an effort to search for new antimycobacterial agents, possibly comprising new pharmacophore, novel triazole-isatin derivatives were designed as Mycobacterium tuberculosis shikimate kinase inhibitors and synthesized by microwave-assisted method. The synthesized molecules were evaluated for their antimycobacterial activity by MABA assay against M. tuberculosis H37Rv. The molecule 5h demonstrated MIC of 0.8 µg/ml and good safety profile with higher selectivity index with HEK293 cell line. The antimycobacterial activity was further substantiated with molecular docking studies. The triazole-isatin derivatives showed significant binding interactions with amino acid residues in the active site of the enzyme. These studies revealed that molecule 5h could act as a potential lead molecule for further studies to find new target-directed molecules.


Subject(s)
Antitubercular Agents , Isatin , Mycobacterium tuberculosis , Phosphotransferases (Alcohol Group Acceptor) , Triazoles , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , HEK293 Cells , Humans , Isatin/chemistry , Isatin/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Shikimic Acid , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Tuberculosis/drug therapy
10.
Nat Prod Res ; 36(19): 5064-5068, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33951985

ABSTRACT

Alpinia galanga (L.) Willd. (Zingiberaceae), or galangal, has been previously reported as active against Mycobacterium tuberculosis (TB) in vitro. The present study assessed a novel antitubercular mechanism of of galangal through M. tuberculosis shikimate kinase (MtSK) inhibitory assays. Sequential extractions of nonpolar solvents hexane and dichloromethane (DCM) were performed on galangal and screened in MtSK inhibitory assays to identify potential activity. Samples were then subjected to high resolution (HR) LC-MS chemical fingerprinting and analysis. Additionally, a novel approach was undertaken for galangal using methods such as mass professional profiler (MPP) and global natural products social (GNPS) molecular networking for structure elucidation.[Formula: see text].


Subject(s)
Alpinia , Biological Products , Mycobacterium tuberculosis , Zingiberaceae , Alpinia/chemistry , Data Analysis , Hexanes , Methylene Chloride , Phosphotransferases (Alcohol Group Acceptor) , Plant Extracts/pharmacology , Rhizome , Solvents , Zingiberaceae/chemistry
11.
Molecules ; 26(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34771148

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK-ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Computer-Aided Design , Enzyme Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Anti-Bacterial Agents/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Models, Molecular , Molecular Structure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Small Molecule Libraries/chemistry
12.
Front Mol Biosci ; 8: 747206, 2021.
Article in English | MEDLINE | ID: mdl-34660698

ABSTRACT

Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved "catalytic" lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg2+•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by the catalytic lysine, stabilize a state in SKs that deviates significantly from one that is necessary for the optimal coordination of Mg2+•ATP. This structural role of the Walker-A lysine is a general feature in SKs and is found to be present in members that encode a Walker-B sequence characteristic of the family (Coxiella burnetii SK), and in those that do not (Mycobacterium tuberculosis SK). Thus, the structural role of the Walker-A lysine in stabilizing an inactive state, distinct from its catalytic function, is conserved between two distantly related P-loop containing kinase families, the SKs and the BY-kinases. The universal conservation of this element, and of the key characteristics of its associated interaction partners within the Walker motifs of P-loop containing enzymes, suggests that this structural role of the Walker-A lysine is perhaps a widely deployed regulatory mechanism within this ancient family.

13.
Bioorg Chem ; 102: 104083, 2020 09.
Article in English | MEDLINE | ID: mdl-32745735

ABSTRACT

Tuberculosis (TB) remains a major global health problem. It causes ill-health among millions of people each year and rank as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Shikimate kinase is one of the major enzymes targeted for TB. Most approaches to overcome TB were based on synthesis and screening of a known compounds to obtain a few representatives with desired potency. In this study, we have applied a virtual screening approach which combines ligand- and structure-based approaches to screen a large library of compounds as a starting point for the identification of new scaffolds for the development of shikimate kinase inhibitors. The combined approach has identified 2 new scaffolds as potential inhibitors of shikimate kinase. To prove the approach, few of the molecules and their derivatives, a total of 17 compounds, were synthesized. The compounds were tested for biological activity and shows moderate activity against shikimate kinase. The shikimate kinase enzyme inhibition study reveals that the compounds showed inhibition (IC50) at concentrations of 50 µg/mL (Compounds 21, 22, 24, 25, 26, 27, 30, 32, 34) and 25 µg/mL (14, 19, 23, 31, 33).


Subject(s)
Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ligands , Molecular Docking Simulation , Molecular Structure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Structure-Activity Relationship
14.
Curr Comput Aided Drug Des ; 16(5): 523-529, 2020.
Article in English | MEDLINE | ID: mdl-31654517

ABSTRACT

BACKGROUND: Shikimate pathway is essential for tubercular bacillus but it is absent in mammals. Therefore, Shikimate kinase and other enzymes in the pathway are potential targets for the development of novel anti-tuberculosis drugs. OBJECTIVE: In the present study, Shikimate kinase is selected as the target for in silico screening of phytochemicals with an aim to discover a novel herbal drug against Mycobacterium tuberculosis (Mtb). METHODS: A structure-based drug discovery approach is undertaken for the execution of the objective. Virtual screening of phytochemical database NPACT against the target, Shikimate kinase (PDB ID 3BAF), is carried out followed by toxicity and drug-likeness filtration. Finally, a lead, narirutin was selected for in vitro anti-tubercular study. RESULTS: Narirutin, present in citrus fruits, emerges as the lead. It is considered to be non-toxic with predicted high LD50 value, 12000 mg/kg body weight. The phytochemical is tested for its antitubercular activity in vitro. It has MIC99 62.5 µg/mL against the MtbH37Rv strain. CONCLUSION: This is the first-ever report to show anti-tuberculosis potency of narirutin.


Subject(s)
Antitubercular Agents/pharmacology , Disaccharides/pharmacology , Flavanones/pharmacology , Molecular Docking Simulation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Drug Discovery , Lethal Dose 50 , Mycobacterium tuberculosis/drug effects , Protein Kinase Inhibitors , Tuberculosis/drug therapy
15.
Mol Biotechnol ; 61(4): 274-285, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30747382

ABSTRACT

One of the most widespread pathogens worldwide is methicillin-resistant Staphylococcus aureus, a bacterium that provokes severe life-threatening illnesses both in hospitals and in the community. The principal challenge lies in the resistance of MRSA to current treatments, which encourages the study of different molecular targets that could be used to develop new drugs against this infectious agent. With this goal, a detailed characterization of shikimate kinase from this microorganism (SaSK) is described. The results showed that SaSK has a Km of 0.153 and 224 µM for shikimate and ATP, respectively, and a global reaction rate of 13.4 µmol/min/mg; it is suggested that SaSK utilizes the Bi-Bi Ping Pong reaction mechanism. Furthermore, the physicochemical data indicated that SaSK is an unstable, hydrophilic, and acidic protein. Finally, structural information showed that SaSK presented folding that is typical of its homologous counterparts and contains the typical domains of this family of proteins. Amino acids that have been shown to be important for SaSK protein function are conserved. Therefore, this study provides fundamental information that may aid in the design of inhibitors that could be used to develop new antibacterial agents.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenosine Triphosphate/metabolism , Drug Design , Enzyme Stability , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Binding , Protein Conformation , Protein Folding , Shikimic Acid/metabolism , Structural Homology, Protein
16.
Biotechnol J ; 13(8): e1700529, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29697210

ABSTRACT

Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.


Subject(s)
Escherichia coli Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Recombinant Proteins/metabolism , Shikimic Acid/analogs & derivatives , Enzyme Stability , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Shikimic Acid/analysis , Shikimic Acid/metabolism
17.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 731-739, 2018.
Article in English | MEDLINE | ID: mdl-29654976

ABSTRACT

Ilimaquinone (IQ), a marine sponge metabolite, has been considered as a potential therapeutic agent for various diseases due to its broad range of biological activities. We show that IQ irreversibly inactivates Mycobacterium tuberculosis shikimate kinase (MtSK) through covalent modification of the protein. Inactivation occurred with an apparent second-order rate constant of about 60 M-1 s-1. Following reaction with IQ, LC-MS analyses of intact MtSK revealed covalent modification of MtSK by IQ, with the concomitant loss of a methoxy group, suggesting a Michael-addition mechanism. Evaluation of tryptic fragments of IQ-derivatized MtSK by MS/MS demonstrated that Ser and Thr residues were most frequently modified with lesser involvement of Lys and Tyr. In or near the MtSK active site, three residues of the P-loop (K15, S16, and T17) as well as S77, T111, and S44 showed evidence of IQ-dependent derivatization. Accordingly, inclusion of ATP in IQ reactions with MtSK partially protected the enzyme from inactivation and limited IQ-based derivatization of K15 and S16. Additionally, molecular docking models for MtSK-IQ were generated for IQ-derivatized S77 and T111. In the latter, ATP was observed to sterically clash with the IQ moiety. Out of three other enzymes evaluated, lactate dehydrogenase was derivatized and inactivated by IQ, but pyruvate kinase and catalase-peroxidase (KatG) were unaffected. Together, these data suggest that IQ is promiscuous (though not entirely indiscriminant) in its reactivity. As such, the potential of IQ as a lead in the development of antitubercular agents directed against MtSK or other targets is questionable.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Quinones/pharmacology , Sesquiterpenes/pharmacology , Adenosine Triphosphate/metabolism , Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Chromatography, Liquid , Kinetics , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Protein Kinase Inhibitors/metabolism , Quinones/metabolism , Sesquiterpenes/metabolism , Tandem Mass Spectrometry
18.
Acta Pharmaceutica Sinica ; (12): 878-886, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-779947

ABSTRACT

Shikimate kinase is a key protein of the shikimic pathway, which is essential for the survival of Mycobacterium tuberculosis. In this study, a screening assay for Mycobacterium tuberculosis shikimate ki-nase (MtSK) inhibitor was developed. A 120 000-compound library was screened by the enzyme assay and the phenotype screening using Mycobacterium smegmatis. A hit compound named IMB-T5297[(E)-3-(3-(3- chloro-5-methoxy-4-(prop-2-yn-1-yloxy)phenyl)acryloyl)-6-methyl-2H-pyran-2,4(3H)-dione] was identified to be a selective inhibitor of MtSK with a half maximal inhibitory concentration (IC50) value of 1.745 μg·mL-1, which also showed antibacterial activity. The interaction between compound and protein was analyzed by surface plasmon resonance (SPR) experiment, which showed the KD value was 2.151×10-5 mol·L-1. The binding model of MtSK and compound was simulated by the computer program. Five key amino acids in the binding pocket were indispensable site-directed mutated to verify the model. IMB-T5297 inhibited Mycobacterium tuberculosis H37Rv with a minimum inhibitory concentration (MIC) value of 49.723 μg·mL-1 and displayed low cytotoxicity to mammalian cells. In this study, IMB-T5297 was identified as a selective inhibitor of MtSK enzyme with anti-tuberculosis activity. With additional structural modification, the compound has a potential to become a novel anti-tuberculosis compound.

19.
Chemistry ; 23(64): 16380-16387, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28925075

ABSTRACT

Shikimate kinase (SK) is the fifth bacterial enzyme involved in the shikimate pathway for biosynthesis of life-indispensable components, such as aromatic amino acids. The absence of the shikimate pathway in humans makes SK an attractive target for the rational design of drugs aimed at pathogenesis bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori. However, an effective inhibitor of SK (e.g., a transition-state analogue) is still not available on the market due, at least in part, to a lack of knowledge on the catalytic mechanism and the nature of the rate-limiting transition state. Herein, quantum mechanical/molecular mechanical (QM/MM) reaction coordinate, molecular dynamics (MD), and free-energy simulations have been performed to answer these questions. The results presented herein demonstrate that the phosphoryl-transfer process, which is the rate-limiting step of SK-catalyzed phosphorylation of shikimic acid (SKM), is a concerted one-step reaction proceeding through a loose transition state. The computational results agree well with those of experimental studies, specifically NMR results, X-ray crystal structure observation, and activation free-energy barrier.


Subject(s)
Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Quantum Theory , Bacterial Proteins/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Helicobacter pylori/enzymology , Mycobacterium tuberculosis/enzymology , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Thermodynamics
20.
J Microbiol Biotechnol ; 26(12): 2087-2097, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27666993

ABSTRACT

Most cold-adapted enzymes possess higher Km and kcat values than those of their mesophilic counterparts to maximize the reaction rate. This characteristic is often ascribed to a high structural flexibility and improved dynamics in the active site. However, this may be less convincing to cold-adapted metabolic enzymes, which work at substrate concentrations near Km. In this respect, cold adaptation of a shikimate kinase (SK) in the shikimate pathway from psychrophilic Colwellia psychrerythraea (CpSK) was characterized by comparing it with a mesophilic Escherichia coli homolog (EcSK). The optimum temperatures for CpSK and EcSK activity were approximately 30°C and 40°C, respectively. The melting points were 33°C and 45°C for CpSK and EcSK, respectively. The ΔGH2O (denaturation in the absence of denaturing agent) values were 3.94 and 5.74 kcal/mol for CpSK and EcSK, respectively. These results indicated that CpSK was a cold-adapted enzyme. However, contrary to typical kinetic data, CpSK had a lower Km for its substrate shikimate than most mesophilic SKs, and the kcat was not increased. This observation suggested that CpSK may have evolved to exhibit increased substrate affinity at low intracellular concentrations of shikimate in the cold environment. Sequence analysis and homology modeling also showed that some important salt bridges were lost in CpSK, and higher Arg residues around critical Arg 140 seemed to increase flexibility for catalysis. Taken together, these data demonstrate that CpSK exhibits characteristics of cold adaptation with unusual kinetic parameters, which may provide important insights into the cold adaptation of metabolic enzymes.


Subject(s)
Alteromonadaceae/enzymology , Bacterial Proteins/genetics , Cloning, Molecular , Phosphotransferases (Alcohol Group Acceptor)/genetics , Alteromonadaceae/chemistry , Alteromonadaceae/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cold Temperature , Enzyme Stability , Gene Expression , Kinetics , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sequence Alignment , Shikimic Acid/chemistry , Shikimic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...