Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.038
Filter
1.
Talanta ; 282: 126981, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39383726

ABSTRACT

Novel X-ray fluorescence technique is applied for determination of ferrous iron (FeO) content for reference material characterization in addition (or as alternative) to volumetric method. Approach is based on the dependence of FeKß5 line relative intensity on the iron valence state. A set of 99 reference materials was studied to choose optimal calibration set containing rocks of different composition: ultrabasic, basic, intermediate, and acid igneous rocks, silicate sedimentary and metamorphic rocks. The ratio of FeKß5 and FeKß1,3 lines intensities was chosen as analytical parameter. A set of 40 GeoPT samples was analyzed, and it was shown that the uncertainty of proposed X-ray fluorescence technique is comparable to one of certified volumetric (potassium dichromate titration) technique for the samples with Fe2O3tot content more than 1 wt%. The presence of Sr and Co in usual for rocks content (up to ∼0.23 wt% and ∼200 µg/g respectively) does not affect to the measurement uncertainty. Analytical potential, limitations and features of proposed technique are discussed.

2.
Sci Total Environ ; : 176727, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383962

ABSTRACT

This study deals with the generation, geochemical characteristics, and environmental impacts of acid rock drainage (ARD), a global environmental problem, on the Barton Peninsula. To elucidate the governing processes and to assess the environmental hazards of ARD, we present chemical data from lakes, ponds, and creeks with a wide range of pH values. We also provide mineralogical and geochemical compositions of sediments and bedrocks. Compared to weak-acidic and neutral waters, waters that display typical characteristics of ARD with low pH (3.7 to 4.2), high sulfate (46 to 92 mg/L), and Fe (0.8 to 16.5 mg/L) occur in the northern tip of the peninsula. Acidic waters with the highest cation (e.g., K, Na, Si, and Ca) and anion (e.g., SO4) compositions indicate ARD-enhanced rock weathering in the peninsula. Consistently, quantifying of chemical weathering degree yields the highest chemical index of alteration (CIA) and the mafic index of alteration (MIA) with the lowest ICV values for sediments from the acidic waters. Enrichment factors (EFs) calculated for As, Co, Cd, Cu, Pb, Zn, and Ni indicate severe to minor enrichment for As and Pb metals, respectively in the acidic water-associated sediments. Heavy metal concentrations of acidic waters also display the highest values for the peninsula, with Fe, Cu, and Cd metals exceeding the chronic aquatic toxicity limit (CAT). Therefore, geochemical records of acidic waters and sediments, especially lakes, may help in tracing the long-term environmental impacts of ARD, while sediments obtained from the weak acidic and near-neutral waters, together with water chemistry data, may provide a better representative composition of the bedrocks with neutralizing potential. The data presented here may contribute to predicting the source/s, and extent of future ARD generation in the peninsula, which is likely to be enhanced by increased chemical weathering due to climate warming.

3.
Article in English | MEDLINE | ID: mdl-39384677

ABSTRACT

Previous studies highlighted the significance of tailoring alkaline activators (AA) to specific fly ash (FA) sources for optimal properties of geopolymer concrete (GPC). This study examines the influence of various AA's properties on mechanical properties and microstructures of local low-calcium FA-based GPC under varying curing conditions. A comprehensive investigation consists of several factors such as NaOH molarities (10 M, 12 M, 14 M, 16 M), Na 2 SiO 3 / N a O H ratios (1.5, 2.0, 2.5) and A A / F A ratios (0.5, 0.6). The results reveal a complex relationship, demonstrating that NaOH molarity positively influences compressive strength up to a threshold of 14 M, beyond which an adverse effect was observed while, the flexural strength was increased up to 16 M. Moreover, the study highlights the complex relationship between Na 2 SiO 3 / N a O H ratios and mechanical strengths. Notably, these properties exhibited an increase as the ratio rose up to 2.0, but a subsequent decrease was observed when the ratio reached 2.5. Moreover, proposed regression equations predict the compressive and flexural strengths of both ambient-cured GPC and heat-cured GPC with marginal statistical errors. The optimal GPC mix exhibited 49% lower embodied CO 2 emissions than the corresponding OPC concrete. GPC has higher cost, but it exhibited lower cost-to-strength ratio compared to OPC concrete.

4.
J Conserv Dent Endod ; 27(8): 828-832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39372563

ABSTRACT

Aim: The aim of this study was to determine the effect of different surface conditioning techniques on the bond strength between zirconia-reinforced lithium silicate (ZLS) ceramics and resin cement. Materials and Methods: Fifty samples of ZLS ceramic were used and allotted into five groups with 10 samples per group based on the type of surface conditioning technique. The ceramic specimens were crystallized and embedded into acrylic resin. The five groups were group 1 (negative control-without surface treatment); group 2 (10% hydrofluoric [HF] acid + silanization); group 3 (10% HF acid only); group 4 (self-etching ceramic primer [SECP]); and group 5 (experimental laboratory sealing of the conditioned surface). Resin cylinders were bonded using self-adhesive resin cement and were subjected to thermocycling after 24 h storage. The shear bond strength was tested with a universal testing machine. Statistical Analysis Used: One-way ANOVA was used for comparing five groups (P < 0.05 was considered significant). Results: Group 4 showed the highest mean bond strength value (23.4 MPa ± 2.21 MPa). A statistically significant difference was noted between group 4 and all the other groups tested in the study (P < 0.05). Conclusion: It can be concluded that the SECP can be considered an alternative to the conventional protocol of HF acid and silane application for the surface conditioning of ZLS ceramic.

5.
J Conserv Dent Endod ; 27(8): 817-821, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39372571

ABSTRACT

Context: An acidic hydrogen potential (pH) in an inflammatory condition in the periapical tissues may affect the properties of repair bioceramic cement. Aims: The aim of this study was to evaluate the effect of pH on the volumetric change of the ready-to-use bioceramic NeoPUTTY (NP) compared to the powder/liquid MTA Repair HP (MTAHP) after immersion in butyric acid (BA, pH 4.1) or phosphate-buffered saline (PBS, pH 7.35). Subjects and Methods: Dentin tubes filled with NP or MTAHP were scanned in micro-computed tomography (micro-CT) after 24 h. Then, the specimens were immersed in 1.5 mL of BA: NP/BA, MTAHP/BA or PBS: NP/PBS, MTAHP/PBS. After 7 days, new micro-CT scans were performed. The percentage of volumetric change (extremities and internal part) of the materials was assessed. Statistical Analysis Used: ANOVA/Tukey and Kruskal-Wallis tests were performed (α =0.05). Results: All materials showed a volumetric decrease after immersion in BA or PBS at the extremities in contact with the solutions. MTAHP/BA showed the highest volumetric loss. There was no difference in the volumetric change when the internal part of the materials was evaluated. Conclusions: An acid pH negatively affects the volumetric stability of MTAHP. Low values of volumetric change were demonstrated for NP in both immersion environments.

6.
J Mol Model ; 30(11): 360, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356315

ABSTRACT

CONTEXT: This research assesses the influence of polypropylene (PP) fibers, both homopolymer and hydroxylated (PPOH), on the tensile properties of calcium silicate hydrate (C-S-H) composites through molecular dynamics (MD) simulations. Our models explore C-S-H matrices integrated with PP and PPOH fibers at varying polymerization degrees. The results demonstrate that both PP and PPOH fibers significantly influence the tensile strength and Young's modulus of the composites. Notably, PPOH fibers contribute to more substantial mechanical enhancements than PP, attributed to the increased polarity and enhanced intermolecular interactions from the hydroxyl groups. The study reveals a nonlinear relationship between polymer additive content and mechanical performance, with optimal properties at a polymerization degree of 20. Additionally, stress-strain analysis indicates that PPOH composites exhibit superior ductility and fracture energy, particularly at polymerization degrees of 20, showing enhanced ultimate strain and fracture energy by up to 9.6% and 13.9%, respectively, compared to PP counterparts. These results highlight the crucial role of tailored polymer additive composition and chemical modifications in maximizing the mechanical efficacy of C-S-H-based materials, enhancing their durability and structural performance. METHODS: All MD simulations were conducted using LAMMPS. The models employed a combination of Clayff and Cvff force fields. During the entire tensile simulation, the system was configured under the NPT ensemble at 300 K.

7.
Environ Sci Technol ; 58(39): 17215-17226, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350657

ABSTRACT

Terrestrial enhanced rock weathering (ERW) is the application of pulverized silicate rock to soils for the purposes of carbon removal and improved soil health. Although a geochemical modeling framework for ERW in soils is emerging, there is a scarcity of experimental and field trial data exploring potential environmental impacts, risks, and monitoring strategies associated with this practice. This paper identifies potential negative consequences and positive cobenefits of ERW scale-up and suggests mitigation and monitoring strategies. To do so, we examined literature on not only ERW but also industry, agriculture, ecosystem science, water chemistry, and human health. From this work, we develop recommendations for future research, infrastructure, and policy needs. We also recommend target metrics, risk mitigation strategies, and best practices for monitoring that will permit early detection and prevention of negative environmental impacts.


Subject(s)
Agriculture , Carbon , Soil , Soil/chemistry , Environmental Monitoring , Ecosystem
8.
Materials (Basel) ; 17(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39336221

ABSTRACT

Ce3+-doped lithium alumino-silicate (Li-Al-Si) scintillating glass was prepared using a melting method and crystallized via heat treatment. X-ray diffraction and transmission electron microscopy confirmed the presence of nanocrystals in the materials. Radioluminescence spectra, obtained by X-ray excitation, and luminescence spectra, obtained by 338 nm excitation, showed that the luminescence intensity increased after crystallization. The glass was combined with pure silica as the inner cladding to fabricate a hybrid fiber core using a melt-in-tube technique. The composition of the fiber core was examined using an electron probe microanalyzer. The glass fiber produced strong blue luminescence under UV excitation. After a micro-crystallizing heat treatment of the hybrid fiber at 850 °C in a reducing atmosphere, a Ce3+-doped lithium alumino-silicate glass-ceramic scintillating hybrid fiber was obtained. The nanocrystal structure of the fiber core was examined using micro-Raman spectroscopy. Excitation and luminescence spectra of the hybrid fiber before and after micro-crystallization were measured using microspectrofluorimetry. The results demonstrated that the fiber remained luminous after micro-crystallization. Hence, this work provides a new way to prepare scintillating glass-ceramic hybrid fibers for neutron detection.

9.
Dent Mater J ; 43(5): 729-737, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39231720

ABSTRACT

Premixed calcium silicate-based materials have recently been developed and are recommended for a wide range of endodontic procedures, including vital pulp therapy. This study investigated the in vitro biocompatibility and pro-mineralization effect and in vivo reparative dentin formation of EndoSequence Root Repair Material, EndoSequence BCRRM, Bio-C Repair, and Well-pulp PT. Both fresh and set extracts had no detrimental effect on the growth of human dental pulp stem cells. The fresh extracts had a higher calcium concentration than the set extracts and induced considerably greater mineralized nodule formation. EndoSequence Root Repair Material had the longest setting time, whereas Bio-C Repair had the shortest. When these materials were applied to exposed rat molar pulps, mineralized tissue deposition was found at the exposure sites after 2 weeks. These results indicate that the premixed calcium silicate-based materials tested could have positive benefits for direct pulp capping procedures.


Subject(s)
Biocompatible Materials , Calcium Compounds , Dental Pulp , Silicates , Stem Cells , Dental Pulp/drug effects , Dental Pulp/cytology , Silicates/pharmacology , Calcium Compounds/pharmacology , Humans , Stem Cells/drug effects , Biocompatible Materials/pharmacology , Rats , Animals , Materials Testing , Cells, Cultured , In Vitro Techniques , Male , Calcium Phosphates , Drug Combinations , Oxides
10.
Nanomaterials (Basel) ; 14(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39269057

ABSTRACT

Mn2+-doped ß-Zn2SiO4, a metastable phase of zinc silicate, is widely acknowledged for the uncertainties linked to its crystal structure and challenging synthesis process along with its distinctive yellowish luminescence. In this study, a vivid yellow luminescence originating from Mn2+-doped metastable zinc silicate (BZSM) nanophosphor is suggested, achieved through a straightforward single-step annealing process. The reliable production of this phosphor necessitates substantial doping, surplus SiO2, a brief annealing duration, and prompt cooling. The verification of the phase is demonstrated based on its optical and crystallographic characteristics. Moreover, the effective utilization of excimer lamps in practical scenarios is effectively demonstrated as a result of the vacuum ultraviolet excitation property of BZSM nanophosphor. This outcome paves the way for additional deployment of metastable zinc silicate in various fields, consequently generating novel prospects for future advancements.

11.
Materials (Basel) ; 17(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274654

ABSTRACT

Vital pulp therapy aims to preserve the vitality of dental pulp exposed due to caries, trauma, or restorative procedures. The aim of the present review was to evaluate the clinical, radiographic, and histological outcomes of different calcium silicate-based cements used in vital pulp therapy for both primary and permanent teeth. The review included 40 randomized controlled trials from a search across PubMed, LILACS, and the Cochrane Collaboration, as well as manual searches and author inquiries according to specific inclusion and exclusion criteria. A critical assessment of studies was conducted, and after data extraction the results were submitted to a quantitative statistical analysis using meta-analysis. The studies, involving 1701 patients and 3168 teeth, compared a total of 18 different calcium silicate-based cements in both dentitions. The qualitative synthesis showed no significant differences in short-term outcomes (up to 6 months) between different calcium silicate-based cements in primary teeth. ProRoot MTA and Biodentine showed similar clinical and radiographic success rates at 6 and 12 months. In permanent teeth, although the global results appeared to be well balanced, ProRoot MTA generally seemed to perform better than other calcium silicate-based cements except for Biodentine, which had comparable or superior results at 6 months. Meta-analyses for selected comparisons showed no significant differences in clinical and radiographic outcomes between ProRoot MTA and Biodentine over follow-up periods. The present review highlights the need for standardized definitions of success and follow-up periods in future studies to better guide clinical decisions. Despite the introduction of new calcium silicate-based cements aiming to address limitations of the original MTA. ProRoot MTA and Biodentine remain the most used and reliable materials for vital pulp therapy, although the results did not deviate that much from the other calcium silicate-based cements. Further long-term studies are required to establish the optimal CSC for each clinical scenario in both dentitions.

12.
Chemosphere ; 365: 143398, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39321884

ABSTRACT

Sediments contaminated with hazardous metals pose risks to humans and wildlife, yet viable management options are scarce. In a series of laboratory experiments, we characterized Polonite® - an activated calcium-silicate - as a novel sorbent for thin-layer capping of metal-contaminated sediments. We tested a fine-grained by-product from the Polonite production as a cheap and sustainable sorbent. First, Polonite was reacted with solutions of Cu, Pb, and Zn, and the surface chemistry of the Polonite was examined using, e.g., scanning electron microscopy to investigate metal sorption mechanisms. Batch experiments were conducted by adding Polonite to industrially contaminated harbor sediment to determine sorption kinetics and isotherms. Importantly, we measured if the Polonite could reduce metal bioavailability to sediment fauna by performing digestive fluid extraction (DFE). Finally, a cap placement technique was studied by applying a Polonite slurry in sedimentation columns. The results showed rapid metal sorption to Polonite via several mechanisms, including hydroxide and carbonate precipitation, and complexation with metal oxides on the Polonite surface. Isotherm data revealed that the sediment uptake capacity (Kf) for Cu, Pb, and Zn increased by a factor of 25, 21, and 14, respectively, after addition of 5% Polonite. The bioavailability of Cu, Pb, and Zn was reduced by 70%, 65%, and 54%, respectively, after a 25% Polonite addition. In conclusion, we propose that sediment treatment with low doses of the Polonite by-product can be a cheap, sustainable, and effective remediation method compared to other more intrusive methods such as dredging or conventional isolation capping.


Subject(s)
Calcium Compounds , Geologic Sediments , Silicates , Water Pollutants, Chemical , Geologic Sediments/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Metals/chemistry , Environmental Restoration and Remediation/methods , Metals, Heavy/chemistry
13.
Chemosphere ; 365: 143349, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39278331

ABSTRACT

Thermal desorption is a well-assessed technique to speciate mercury (Hg) in soils and sediments. However, the effects related to the different matrices are still not properly assessed. In this study, thermal desorption was applied to Hg-free calcite mixed with Hg standard and soils rich in carbonate and silicate minerals, as well as organic matter. Hg0, HgCl2, HgO, α-HgS, ß-HgS and organo-mercuric compounds were recognized, pointing out that the soil matrix operates notable differences in terms of breakdown temperatures of the Hg-compounds and suggesting that the mineralogical composition of soil has to be investigated before applying the thermal desorption technique. Furthermore, the presence of Hg0 was carefully evaluated since, as already observed, it forms Hg2+, which increases mercury mobility in the pedological cover with important consequences for those soils contaminated and located close to decommissioned or active mining areas and/or industrial sites (e.g. chloro-alkali industries). Experimental runs were thus carried out by using carbonate-, silicate- and organic-rich soils doped with liquid Hg. It was observed that Hg0 tends to be oxidized to form Hg+ and then Hg2+ as a function of soil matrix and reaction time. Surprisingly, the oxidation rate is rather fast, since after 42 days the initial content of Hg0 is halved, thus following an exponential decay. This implies that in Hg0-polluted areas, the fate of the resulting Hg2+ can be that to: i) be adsorbed by organic matter and/or Fe-Mn-Al oxides and/or ii) feed shallow aquifers. This study is a further step ahead to understand the behavior of Hg in contaminated soils from industrial and mining areas where liquid Hg is occurring in different soil matrices and may provide useful indications for remediation operations.


Subject(s)
Mercury , Silicates , Soil Pollutants , Soil , Soil Pollutants/chemistry , Soil Pollutants/analysis , Mercury/chemistry , Mercury/analysis , Soil/chemistry , Silicates/chemistry , Carbonates/chemistry , Adsorption
14.
Biomimetics (Basel) ; 9(9)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39329533

ABSTRACT

Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds.

15.
ACS Appl Mater Interfaces ; 16(38): 51046-51054, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39250603

ABSTRACT

Layered silicates, including clay minerals, can be used as liquid-phase adsorbents in many important applications. However, because their two-dimensional interlayer space is narrow and not entirely opened due to the presence of interlayer species, guest species are forced to penetrate while expanding the interlayer space, which limits their adsorption performances compared with microporous materials such as MOFs and zeolites. Herein, as reported for the adsorption of gaseous species on flexible MOFs, we report a layered silicate that exhibits gate-opening adsorption in liquid phases. This layered silicate, synthesized via dilute acid treatment of the parent sodium-type, exhibits an abrupt increase in the basal spacing (layer thickness + interlayer space) to reach a plateau even at an earlier stage of benzoic acid adsorption from acetonitrile, whereas a typical layered silicate, magadiite, exhibits a gradual increase in the basal spacing as adsorption progress under identical conditions. The layered silicate shows an excellent adsorption capacity and rate for benzoic acid uptake from acetonitrile, which is considerably higher than that of magadiite. With comprehensive adsorption tests using different adsorbates and solvents, we propose that the layered silicate has zeolite-like but distorted, flexible open microchannels within each layer, and the intralayer microchannels can effectively and rapidly accommodate the solvent (acetonitrile) molecules, which are capable of expanding the framework to initiate the adsorption of aromatic compounds. The density function theory calculation revealed the adsorption mechanism, where the layered silicate accommodates acetonitrile in the intralayer microchannel followed by the interlayer space, and the former selectively plays a role as the adsorption site of aromatic compounds via exchange with acetonitrile.

16.
Cureus ; 16(7): e65812, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39219901

ABSTRACT

INTRODUCTION: Biodentine, a calcium silicate-based material, is known for its biocompatibility and ability to promote dentin regeneration. With their unique branching structure, polyamidoamine (PAMAM) dendrimers have shown promise in facilitating biomimetic remineralization processes. AIM: This study investigates the synergistic effects of combining PAMAM with Biodentine on root dentin remineralization, aiming to develop a novel bioactive compound that offers superior protective and regenerative properties. METHODS: The following predictions were made: (1) In a cyclic artificial saliva/acid regimen, among the test groups, the combination of Biodentine and PAMAM would cause the most root dentin remineralization (2). Biodentine alone would increase Ca and P concentrations, neutralize acid, and promote root dentin remineralization (3). PAMAM, on the other hand, can remineralize the demineralized root dentin. RESULTS: Minimal mineral regeneration was accomplished in demineralized root dentin when treated with Biodentine or PAMAM alone. Root dentin remineralization was most pronounced when Biodentine and PAMAM were used together, and the hardness of demineralized root dentin was raised to an equivalent level to that of healthy root dentin. DISCUSSION: The study demonstrated the exceptional ability of PAMAM + Biodentine to promote root dentin remineralization. In an acid-challenging environment, PAMAM + Biodentine promoted full and efficient root dentin remineralization. Restorations made using innovative PAMAM + Biodentine technology show promise in remineralizing and protecting tooth structures.

17.
J Environ Manage ; 370: 122560, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299108

ABSTRACT

The selective recovery of phosphate from wastewater can manage nutrients and realize the recycling of phosphorus resources. In this study, a novel konjac glucomannan/pectin/calcium silicate composite hydrogel (KP-CSH) was developed for efficient recovery of phosphate in aqueous solution. The amount of alkali released after the reaction of KP-CSH in a neutral solution was small (the pH of the solution after the reaction was < 9). In a wide initial pH range (3-10), the adsorption capacity of KP-CSH in 50 mg-P/L phosphate solution reached 39∼45 mg-P/g. Besides, even if the pH of the solution after the reaction was less than 8, it could still well adsorb phosphate. The kinetic and isothermal adsorption experiments indicated that the adsorption process of phosphate by KP-CSH was chemical adsorption, and the maximum adsorption capacity was 61.2 mg-P/g. KP-CSH preferentially adsorbed phosphate even in the presence of high concentrations of competitive ions. In the actual biogas slurry, KP-CSH also exhibited the strongest selectivity/affinity for phosphate, and its distribution coefficient (Kd) was significantly higher than that of other co-existing anions and cations. The adsorption mechanism analysis indicated that Ca was the main adsorption site of KP-CSH, and that the adsorption process of target pollutants mainly involved ligand exchange and the intra-sphere complexation. Further plant seed germination and seedling growth experiments suggested that KP-CSH after phosphate recovery did not exert a negative effect on the growth of plant seedlings, and increased the chlorophyll content of seedling leaves. These results demonstrate that KP-CSH is a potential adsorbent for efficient phosphate recovery, which can be used as a slow-release phosphate fertilizer after recovering phosphate.

18.
Glob Chang Biol ; 30(9): e17511, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39295254

ABSTRACT

Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis-basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha-1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha-1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate-GHG emission integration and the high potential of SOM stabilization in ESW studies.


Subject(s)
Agriculture , Bacillus subtilis , Soil , Bacillus subtilis/physiology , Agriculture/methods , Soil/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Fertilizers/analysis , Climate Change , Silicates , Soil Microbiology
19.
Food Sci Technol Int ; : 10820132241271798, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39295422

ABSTRACT

This study aimed to investigate the impact of slightly acidic electrolyzed water combined with lithium magnesium silicate hydrosol on the quality of fresh slices of Gastrodia elata under varying storage temperatures, including room temperature fresh slices of Gastrodia elata 25 °C and 37 °C. Fresh slices of Gastrodia elata 25 and 37 samples were stored for 13 days and extensively analyzed for color, weight loss, decay index, bacterial count, vitamin C, and polysaccharide contents during different storage periods. The findings revealed that the slightly acidic electrolyzed water + hydrosol treatment notably decreased weight loss and decay index compared to distilled water and slightly acidic electrolyzed water treatments. Moreover, fresh slices of Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol exhibited untraceable bacterial counts after 3 days, with counts starting to increase after 7 days of storage. The bacterial counts rose from 3.25 to 5.36 and from 4.13 to 5.79 log CFU/g under both storage conditions. The application of slightly acidic electrolyzed water + hydrosol resulted in reduced chromaticity values of L*, a*, and b* on the Gastrodia elata surface, along with a lower percentage loss of polysaccharide contents and vitamin C compared to distilled water and slightly acidic electrolyzed water treatments. These results suggested that Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol maintained its quality characteristics and nutritional attributes, exhibiting greater stability during storage.

20.
Odontology ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305358

ABSTRACT

Calcium silicate-based sealers are bioactive materials that release ions when in contact with body fluids. Therefore, this study aims mapping/trace bone formation markers released by MTA Fillapex, BioRoot RCS, and experimental tricalcium silicate-based sealer (CEO) into subcutaneous tissues, bloodstream and body organs. Toward, polyethylene tubes filled with sealers were implanted into connective tissue of Wistar rats. On days 7, 15, 30, and 45 after implantation, blood samples were collected to measure calcium (Ca2+), phosphorus (P), and alkaline phosphatase (ALP) levels. Thereafter, the animals were killed, and the brain, liver, kidneys, and subcutaneous tissue were removed and processed to determine the concentrations of Ca2+ and P by ICP-OES. Similar Ca2+ levels were observed in subcutaneous tissue for all groups, although, at 45 days, it was identified a reduction in Ca2+ serum levels of CEO compared to those two other sealers and an increase in Ca2+ levels in the liver compared to those released by MTA Fillapex. In contrast, no trace of P was detected in any tissue; moreover, plasma P and ALP serum levels of MTA Fillapex were higher at day 30. Our findings showed that Ca2+ were identified in local tissues, bloodstream, and organs from all sealers. The up-regulation of bone marker levels promoted by sealers can modify body homeostasis and induce tissue damage. Besides, MTA Fillapex was associated with a raise of bone marker levels, suggesting a possible systemic effect. The sealer composition can affect not only the local repair process but also the systemic health.

SELECTION OF CITATIONS
SEARCH DETAIL