Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Small ; : e2406397, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223859

ABSTRACT

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

2.
ACS Appl Mater Interfaces ; 16(35): 46889-46896, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39169801

ABSTRACT

P-type hydrogenated nanocrystalline silicon (nc-Si:H) has been used as a hole-selective layer for efficient n-type crystalline silicon heterojunction (SHJ) solar cells. However, the presence of an additional valence band offset at the interface between intrinsic amorphous hydrogenated silicon and p-type nc-Si:H films will limit the hole carrier transportation. In this work, it has been found that when a heavily boron-doped silicon oxide layer deposited with high hydrogen dilution to silane (pB) was inserted into their interface, the fill factor of SHJ solar cells increases 3% absolutely because of the reduced valence band offset and the increased opportunity to provide a hopping tunnel assisted by the doping energy level and valence band tail states. Furthermore, the additional boron incorporation in intrinsic amorphous silicon adjacent to pB helps to enhance the built-in electric field, thus increasing the hole selectivity. By these means, the power conversion efficiency was improved from 23.9% to approximately 25%.

3.
Adv Sci (Weinh) ; 11(12): e2306993, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233212

ABSTRACT

Passivating contactsin heterojunction (HJ) solar cells have shown great potential in reducing recombination losses, and thereby achieving high power conversion efficiencies in photovoltaic devices. In this direction, carbon nanomaterials have emerged as a promising option for carbon/silicon (C/Si) HJsolar cells due to their tunable band structure, wide spectral absorption, high carrier mobility, and properties such as multiple exciton generation. However, the current limitations in efficiency and active area have hindered the industrialization of these devices. In this review, they examine the progress made in overcoming these constraints and discuss the prospect of achieving high power conversion efficiency (PCE) C/Si HJ devices. A C/Si HJ solar cell is also designed by introducing an innovative interface passivation strategy to further boost the PCE and accelerate the large area preparationof C/Si devices. The physical principle, device design scheme, and performanceoptimization approaches of this passivated C/Si HJ cells are discussed. Additionally, they outline potential future pathways and directions for C/Si HJ devices, including a reduction in their cost to manufacture and their incorporation intotandem solar cells. As such, this review aims to facilitate a deeperunderstanding of C/Si HJ solar cells and provide guidance for their further development.

4.
Nanotechnology ; 35(1)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37748440

ABSTRACT

The hole collector in silicon heterojunction cells serves not only as an integral component of thep/njunction, determining the strength of the built-in electric field, but also as a layer responsible for hole transport, thereby affecting carrier transport capacity. To enhance carrier extraction and transport properties of the hole collector, various interface treatments have been employed onp-type nanocrystalline (p-nc-Si:H) hole collectors. Through an examination of characteristics such as dark conductivity, crystallinity, and contact resistance, the impact of interface treatment onp-nc-Si:H hole collectors is clarified. Furthermore, considering distinct requirements for the hole collector at different locations, interface treatment processes are optimized accordingly. The introduction of interface treatment onp-nc-Si:H hole collectors has demonstrated significant enhancement of both front and rear junction cell efficiencies, which increased from 17.74% to 21.61% and from 16.83% to 20.92%, respectively.

5.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049320

ABSTRACT

Global-warming-induced climate changes and socioeconomic issues increasingly stimulate reviews of renewable energy. Among energy-generation devices, solar cells are often considered as renewable sources of energy. Lately, transparent conducting oxides (TCOs) are playing a significant role as back/front contact electrodes in silicon heterojunction solar cells (SHJ SCs). In particular, the optimized Sn-doped In2O3 (ITO) has served as a capable TCO material to improve the efficiency of SHJ SCs, due to excellent physicochemical properties such as high transmittance, electrical conductivity, mobility, bandgap, and a low refractive index. The doped-ITO thin films had promising characteristics and helped in promoting the efficiency of SHJ SCs. Further, SHJ technology, together with an interdigitated back contact structure, achieved an outstanding efficiency of 26.7%. The present article discusses the deposition of TCO films by various techniques, parameters affecting TCO properties, characteristics of doped and undoped TCO materials, and their influence on SHJ SC efficiency, based on a review of ongoing research and development activities.

6.
Materials (Basel) ; 16(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770227

ABSTRACT

In this work, a new design of transparent conductive electrode based on a graphene monolayer is evaluated. This hybrid electrode is incorporated into non-standard, high-efficiency crystalline silicon solar cells, where the conventional emitter is replaced by a MoOx selective contact. The device characterization reveals a clear electrical improvement when the graphene monolayer is placed as part of the electrode. The current-voltage characteristic of the solar cell with graphene shows an improved FF and Voc provided by the front electrode modification. Improved conductance values up to 5.5 mS are achieved for the graphene-based electrode, in comparison with 3 mS for bare ITO. In addition, the device efficiency improves by around 1.6% when graphene is incorporated on top. These results so far open the possibility of noticeably improving the contact technology of non-conventional photovoltaic technologies and further enhancing their performance.

7.
Adv Mater ; 35(6): e2208042, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36433769

ABSTRACT

Colored solar panels, realized by depositing various reflection layers or structures, are emerging as power sources for building with visual aesthetics. However, these panels suffer from reduced photocurrent generation due to the less efficient light harvesting from visible light reflection and degraded power conversion efficiency (PCE). Here, color-patterned silicon heterojunction solar cells are achieved by incorporating luminescent quantum dots (QDs) with high quantum yields as light converters to realize an asthenic appearance with high PCE. It is found that large bandgap (blue) QD layers can convert UV light into visible light, which can notably alleviate the parasitic absorption by the front indium tin oxide and doped amorphous silicon. Additionally, a universal optical path model is proposed to understand the light transmission process, which is suitable for luminescent down-shift devices. In this study, solar cells with a PCE exceeding 23.5% are achieved using the combination of a blue QD layer and a top low refractive index anti-reflection layer. Based on our best knoledge,the obtained PCE is the highest for a color-patterned solar cell. The results suggest an enhanced strategy involving incorporation of luminescent QDs with an optical path design for high-performance photovoltaic panels with visual aesthetics.

8.
Nanomaterials (Basel) ; 12(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35889664

ABSTRACT

This work presents the implementation of ultrathin TiO2 films, deposited at room temperature by radio-frequency magnetron sputtering, as electron-selective contacts in silicon heterojunction solar cells. The effect of the working pressure on the properties of the TiO2 layers and its subsequent impact on the main parameters of the device are studied. The material characterization revealed an amorphous structure regardless of the working pressure; a rougher surface; and a blue shift in bandgap in the TiO2 layer deposited at the highest-pressure value of 0.89 Pa. When incorporated as part of the passivated full-area electron contact in silicon heterojunction solar cell, the chemical passivation provided by the intrinsic a-Si:H rapidly deteriorates upon the sputtering of the ultra-thin TiO2 films, although a short anneal is shown to restore much of the passivation lost. The deposition pressure and film thicknesses proved to be critical for the efficiency of the devices. The film thicknesses below 2 nm are necessary to reach open-circuit values above 660 mV, regardless of the deposition pressure. More so, the fill-factor showed a strong dependence on deposition pressure, with the best values obtained for the highest deposition pressure, which we correlated to the porosity of the films. Overall, these results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO2 contact deposited by magnetron sputtering. These results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO2 contact.

9.
Nanoscale Res Lett ; 16(1): 87, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34009527

ABSTRACT

Owing to its large work function, MoOX has been widely used for hole-selective contact in both thin film and crystalline silicon solar cells. In this work, thermally evaporated MoOX films are employed on the rear sides of p-type crystalline silicon (p-Si) solar cells, where the optical and electronic properties of the MoOX films as well as the corresponding device performances are investigated as a function of post-annealing treatment. The MoOX film annealed at 100 °C shows the highest work function and proves the best hole selectivity based on the results of energy band simulation and contact resistivity measurements. The full rear p-Si/MoOX/Ag-contacted solar cells demonstrate the best performance with an efficiency of 19.19%, which is the result of the combined influence of MoOX's hole selectivity and passivation ability.

10.
ACS Appl Mater Interfaces ; 8(23): 14572-7, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27232372

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) is widely applied in organic-photoelectronic devices due to its excellent transparency and conductivity. However, when it is used in the organic-silicon heterojunction solar cells with traditional pyramid texturing surface, the device performance is limited by the contact between the PEDOT: PSS and silicon wafer at the bottom of the pyramids. We optimized the structure of the bottom of the pyramids via acid isotropic etching (AIE) method with mixed acid solution to ensure that the silicon wafer is fully covered by the PEDOT: PSS. In addition, hydrogenated amorphous silicon thin films were deposited with PEVCD method as the passivation and back surface field (BSF) layer to decrease the rear surface recombination rate, thus increasing the long wavelength response. Finally, a power conversion efficiency of 13.78% was achieved after depositing MoO3 on the front of the device as the antireflection layer.

SELECTION OF CITATIONS
SEARCH DETAIL