ABSTRACT
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a joint global effort to develop vaccines and other treatments that could mitigate the negative effects and the rapid spread of the virus. Single-domain antibodies derived from various sources, including cartilaginous fish, camelids, and humans, have gained attention as promising therapeutic tools against coronavirus disease 2019. Shark-derived variable new antigen receptors (VNARs) have emerged as the smallest naturally occurring antigen-binding molecules. Here, we compile and review recent published studies on VNARs with the capacity to recognize and/or neutralize SARS-CoV-2. We found a close balance between the use of natural immune libraries and synthetic VNAR libraries for the screening against SARS-CoV-2, with phage display being the preferred display technology for the selection of VNARs against this virus. In addition, we discuss potential modifications and engineering strategies employed to improve the neutralization potential of VNARs, such as exploring fusion with the Fc domain of human Immunoglobulin G (IgG) to increase avidity and therapeutic potential. This research highlights the potential of VNARs as powerful molecular tools in the fight against infectious diseases.
Subject(s)
COVID-19 , Sharks , Animals , Humans , SARS-CoV-2 , Cell Surface Display Techniques , Receptors, AntigenABSTRACT
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Subject(s)
Antiviral Agents , Single-Domain Antibodies , Virus Diseases , Single-Domain Antibodies/therapeutic use , Animals , Camelidae/metabolism , Antiviral Agents/therapeutic use , Molecular Targeted Therapy , Virus Diseases/drug therapy , Virus Diseases/virology , Humans , Viruses/classificationABSTRACT
Severe Acute Respiratory Syndrome Coronavirus 2 is the causal pathogen of coronavirus disease 2019 (COVID-19). The emergence of new variants with different mutational patterns has limited the therapeutic options available and complicated the development of effective neutralizing antibodies targeting the spike (S) protein. Variable New Antigen Receptors (VNARs) constitute a neutralizing antibody technology that has been introduced into the list of possible therapeutic options against SARS-CoV-2. The unique qualities of VNARs, such as high affinities for target molecules, capacity for paratope reformatting, and relatively high stability, make them attractive molecules to counteract the emerging SARS-CoV-2 variants. In this study, we characterized a VNAR antibody (SP240) that was isolated from a synthetic phage library of VNAR domains. In the phage display, a plasma with high antibody titers against SARS-CoV-2 was used to selectively displace the VNAR antibodies bound to the antigen SARS-CoV-2 receptor binding domain (RBD). In silico data suggested that the SP240 binding epitopes are located within the ACE2 binding interface. The neutralizing ability of SP240 was tested against live Delta and Omicron SARS-CoV-2 variants and was found to clear the infection of both variants in the lung cell line A549-ACE2-TMPRSS2. This study highlights the potential of VNARs to act as neutralizing antibodies against emerging SARS-CoV-2 variants.
Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Neutralization Tests , Antibodies, Viral , Antibodies, Neutralizing , EpitopesABSTRACT
A infecção por parvovírus de ganso (GPV) é uma doença infecciosa altamente patogênica em gansinhos e patinhos de Muscovy. Para detectar o antígeno GPV, desenvolvemos um novo ensaio imunoenzimático (ELISA) sanduíche usando um anticorpo de domínio único de cadeia pesada específico contra a proteína GPV NS1 como anticorpo de detecção. Os limites de detecção da proteína GST-NS1 e do título do vírus da cepa GPV H1 foram 5 ng/mL e 102,9 TCID50/mL, respectivamente. O ELISA sanduíche foi específico para GPV sem reatividade cruzada com outros vírus comuns de ganso, incluindo vírus Tembusu, circovírus de ganso, adenovírus de aves, vírus Newcastle ou vírus H9 da gripe aviária. Um total de 118 amostras de swab cloacal foram usadas para detectar o antígeno GPV usando o ELISA sanduíche e reação em cadeia da polimerase com uma taxa de coincidência de 91,5%. A sensibilidade e especificidade do ELISA sanduíche foram de 91,6% e 91,4%, respectivamente. Esses resultados sugerem que este ELISA sanduíche pode ser aplicado para detectar GPV.
Subject(s)
Animals , Recombinant Proteins/analysis , Parvovirus/isolation & purification , Geese/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Polymerase Chain Reaction/veterinaryABSTRACT
Monoclonal antibodies have contributed to improving the treatment of several diseases. However, limitations related to pharmacokinetic parameters and production costs have instigated the search for alternative products. Camelids produce functional immunoglobulins G devoid of light chains and CH1 domains, in which the antigenic recognition site is formed by a single domain called VHH or nanobody. VHHs' small size and similarity to the human VH domain contribute to high tissue penetration and low immunogenicity. In addition, VHHs provide superior antigen recognition compared to human antibodies, better solubility and stability. Due to these characteristics and the possibility of obtaining gene-encoding VHHs, applications of this biological tool, whether as a monomer or in related recombinant constructs, have been reported. To ensure antibody efficacy and cost-effectiveness, strategies for their expression, either using prokaryotic or eukaryotic systems, have been utilized. Plant-based expression systems are useful for VHH related constructs that require post-translational modifications. This system has exhibited versatility, low-cost upstream production, and safety. This article presents the main advances associated to the heterologous expression of VHHs in plant systems. Besides, we show insights related to the use of VHHs as a strategy for plant pathogen control and a tool for genomic manipulation in plant systems.
Subject(s)
Gene Expression , Plants, Genetically Modified , Plants , Single-Domain Antibodies , Animals , Humans , Plants/genetics , Plants/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/geneticsABSTRACT
The Zika virus was introduced in Brazil in 2015 and, shortly after, spread all over the Americas. Nowadays, it remains present in more than 80 countries and represents a major threat due to some singularities among other flaviviruses. Due to its easy transmission, high percentage of silent cases, the severity of its associated complications, and the lack of prophylactic methods and effective treatments, it is essential to develop reliable and rapid diagnostic tests for early containment of the infection. Nonstructural protein 1 (NS1), a glycoprotein involved in all flavivirus infections, is secreted since the beginning of the infection into the blood stream and has proven to be a valuable biomarker for the early diagnosis of other flaviviral infections. Here, we describe the development of a highly sensitive nanobody ELISA for the detection of the NS1 protein in serum samples. Nanobodies were selected from a library generated from a llama immunized with Zika NS1 (ZVNS1) by a two-step high-throughput screening geared to identify the most sensitive and specific nanobody pairs. The assay was performed with a sub-ng/mL detection limit in the sera and showed excellent reproducibility and accuracy when validated with serum samples spiked with 0.80, 1.60, or 3.10 ng/mL of ZVNS1. Furthermore, the specificity of the developed ELISA was demonstrated using a panel of flavivirus' NS1 proteins; this is of extreme relevance in countries endemic for more than one flavivirus. Considering that the nanobody sequences are provided, the assay can be reproduced in any laboratory at low cost, which may help to strengthen the diagnostic capacity of the disease even in low-resource countries.
Subject(s)
Antibodies, Viral/chemistry , Enzyme-Linked Immunosorbent Assay/standards , Single-Domain Antibodies/chemistry , Viral Nonstructural Proteins/blood , Zika Virus Infection/diagnosis , Zika Virus/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/isolation & purification , Camelids, New World , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Humans , Limit of Detection , Peptide Library , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/isolation & purification , Uruguay , Zika Virus Infection/blood , Zika Virus Infection/immunology , Zika Virus Infection/virologyABSTRACT
Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.
ABSTRACT
Group A Rotavirus (RVA) remains a leading cause of severe diarrhea and child mortality. The variable domain of camelid heavy chain antibodies (VHH) display potent antigen-binding capacity, have low production costs and are suitable for oral therapies. Two sets of anti-RVA VHHs have been developed: ARP1-ARP3; 2KD1-3B2. Here, we explore the potential of both sets as a prevention strategy complementary to vaccination and a treatment option against RVA-associated diarrhea in endangered populations. Both sets have been expressed in multiple production systems, showing extensive neutralizing capacity against strains of RVA in vitro. They were also tested in the neonatal mouse model with various degrees of success in preventing or treating RVA-induced diarrhea. Interestingly, mitigation of the symptoms was also achieved with freeze-dried ARP1, so that it could be applied in areas where cold chains are difficult to maintain. 3B2 was tested in a pre-clinical trial involving gnotobiotic piglets where it conferred complete protection against RVA-induced diarrhea. ARP1 was used in the first clinical trial for anti-RVA VHHs, successfully reducing stool output in infants with RVA diarrhea, with no detected side effects.
Subject(s)
Diarrhea/drug therapy , Diarrhea/virology , Immunoglobulin Fragments/therapeutic use , Rotavirus Infections/drug therapy , Animals , Animals, Newborn , Bangladesh , Child , Diarrhea/prevention & control , Humans , Mice , Plants, Genetically Modified , Probiotics , Randomized Controlled Trials as Topic , Rotavirus Infections/prevention & control , SwineABSTRACT
Los rotavirus del grupo A (RVA) constituyen la principal causa de diarrea grave y mortalidad infantil. La porción variable de los anticuerpos de cadena pesada derivados de camélidos presentan una amplia capacidad de unión antigénica (reconocen sitios antigénicos no accesibles a los anticuerpos tradicionales, con elevada afinidad) tienen bajos costos de producción y resultan ideales para las terapias orales. A la fecha, se desarrollaron 2 pares de nanoanticuerpos VHH contra RVA: ARP1-ARP3 y 2KD1-3B2. En este trabajo, exploramos el potencial de ambos grupos de nanoanticuerpos como estrategias de prevención complementarias a la vacunación y como una opción de tratamiento frente a la diarrea asociada a RVA en poblaciones de riesgo. Ambos pares de nanoanticuerpos fueron expresados en diferentes sistemas de producción y mostraron amplia capacidad neutralizante contra diversas cepas de RVA in vitro. También fueron usados en el modelo de ratón lactante, en el que evidenciaron distintos grados de éxito en la prevención o el tratamiento de la diarrea inducida por RVA. Es interesante destacar que la mitigación de los síntomas también se logró con ARP1 liofilizado y conservado, por lo que podría ser utilizado en áreas donde es difícil mantener la cadena de frío. Asimismo, 3B2 fue testeado en una prueba preclínica utilizando como modelo al cerdo gnotobiótico, al cual confirió completa protección contra la diarrea inducida por RVA. ARP1 fue usado en la primera prueba clínica de nanoanticuerpos VHH contra RVA, donde redujo significativamente las deposiciones en pacientes pediátricos con diarrea positivos para RVA, sin evidenciar ninguna reacción adversa
Group A Rotavirus (RVA) remains a leading cause of severe diarrhea and child mortality. The variable domain of camelid heavy chain antibodies (VHH) display potent antigen-binding capacity, have low production costs and are suitable for oral therapies. Two sets of anti-RVA VHHs have been developed: ARP1-ARP3; 2KD1-3B2. Here, we explore the potential of both sets as a prevention strategy complementary to vaccination and a treatment option against RVA-associated diarrhea in endangered populations. Both sets have been expressed in multiple production systems, showing extensive neutralizing capacity against strains of RVA in vitro. They were also tested in the neonatal mouse model with various degrees of success in preventing or treating RVA-induced diarrhea. Interestingly, mitigation of the symptoms was also achieved with freeze-dried ARP1, so that it could be applied in areas where cold chains are difficult to maintain. 3B2 was tested in a pre-clinical trial involving gnotobiotic piglets where it conferred complete protection against RVA-induced diarrhea. ARP1 was used in the first clinical trial for anti-RVA VHHs, successfully reducing stool output in infants with RVA diarrhea, with no detected side effects