ABSTRACT
OBJECTIVE: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. METHODS: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. RESULTS: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. CONCLUSION: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.
ABSTRACT
Rambouillet sheep are commonly raised in extensive grazing systems in the US, mainly for wool and meat production. Genomic evaluations in US sheep breeds, including Rambouillet, are still incipient. Therefore, we aimed to evaluate the feasibility of performing genomic prediction of breeding values for various traits in Rambouillet sheep based on single nucleotide polymorphisms (SNP) or haplotypes (fitted as pseudo-SNP) under a single-step GBLUP approach. A total of 28,834 records for birth weight (BWT), 23,306 for postweaning weight (PWT), 5,832 for yearling weight (YWT), 9,880 for yearling fibre diameter (YFD), 11,872 for yearling greasy fleece weight (YGFW), and 15,984 for number of lambs born (NLB) were used in this study. Seven hundred forty-one individuals were genotyped using a moderate (50 K; n = 677) or high (600 K; n = 64) density SNP panel, in which 32 K SNP in common between the two SNP panels (after genotypic quality control) were used for further analyses. Single-step genomic predictions using SNP (H-BLUP) or haplotypes (HAP-BLUP) from blocks with different linkage disequilibrium (LD) thresholds (0.15, 0.35, 0.50, 0.65, and 0.80) were evaluated. We also considered different blending parameters when constructing the genomic relationship matrix used to predict the genomic-enhanced estimated breeding values (GEBV), with alpha equal to 0.95 or 0.50. The GEBV were compared to the estimated breeding values (EBV) obtained from traditional pedigree-based evaluations (A-BLUP). The mean theoretical accuracy ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.35 and alpha equal to 0.95 for YFD). The prediction accuracies ranged from 0.143 (A-BLUP for PWT) to 0.330 (A-BLUP for YGFW) while the prediction bias ranged from -0.104 (H-BLUP for PWT) to 0.087 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.15 and alpha equal to 0.95 for YGFW). The GEBV dispersion ranged from 0.428 (A-BLUP for PWT) to 1.035 (A-BLUP for YGFW). Similar results were observed for H-BLUP or HAP-BLUP, independently of the LD threshold to create the haplotypes, alpha value, or trait analysed. Using genomic information (fitting individual SNP or haplotypes) provided similar or higher prediction and theoretical accuracies and reduced the dispersion of the GEBV for body weight, wool, and reproductive traits in Rambouillet sheep. However, there were no clear improvements in the prediction bias when compared to pedigree-based predictions. The next step will be to enlarge the training populations for this breed to increase the benefits of genomic predictions.
Subject(s)
Polymorphism, Single Nucleotide , Wool , Sheep/genetics , Animals , Haplotypes , Genomics/methods , Genotype , Phenotype , Sheep, Domestic/genetics , Birth Weight , North America , Models, GeneticABSTRACT
Metafounders are pseudo-individuals that act as proxies for animals in base populations. When metafounders are used, individuals from different breeds can be related through pedigree, improving the compatibility between genomic and pedigree relationships. The aim of this study was to investigate the use of metafounders and unknown parent groups (UPGs) for the genomic evaluation of a composite beef cattle population. Phenotypes were available for scrotal circumference at 14 months of age (SC14), post weaning gain (PWG), weaning weight (WW), and birth weight (BW). The pedigree included 680,551 animals, of which 1,899 were genotyped for or imputed to around 30,000 single-nucleotide polymorphisms (SNPs). Evaluations were performed based on pedigree (BLUP), pedigree with UPGs (BLUP_UPG), pedigree with metafounders (BLUP_MF), single-step genomic BLUP (ssGBLUP), ssGBLUP with UPGs for genomic and pedigree relationship matrices (ssGBLUP_UPG) or only for the pedigree relationship matrix (ssGBLUP_UPGA), and ssGBLUP with metafounders (ssGBLUP_MF). Each evaluation considered either four or 10 groups that were assigned based on breed of founders and intermediate crosses. To evaluate model performance, we used a validation method based on linear regression statistics to obtain accuracy, stability, dispersion, and bias of (genomic) estimated breeding value [(G)EBV]. Overall, relationships within and among metafounders were stronger in the scenario with 10 metafounders. Accuracy was greater for models with genomic information than for BLUP. Also, the stability of (G)EBVs was greater when genomic information was taken into account. Overall, pedigree-based methods showed lower inflation/deflation (regression coefficients close to 1.0) for SC14, WWM, and BWD traits. The level of inflation/deflation for genomic models was small and trait-dependent. Compared with regular ssGBLUP, ssGBLUP_MF4 displayed regression coefficient closer to one SC14, PWG, WWM, and BWD. Genomic models with metafounders seemed to be slightly more stable than models with UPGs based on higher similarity of results with different numbers of groups. Further, metafounders can help to reduce bias in genomic evaluations of composite beef cattle populations without reducing the stability of GEBVs.
ABSTRACT
Milk fat composition has important implications in the nutritional and processing properties of milk. Additionally, milk fat composition is associated with cow physiological and health status. The main objectives of this study were (1) to estimate genetic parameters for 5 milk fatty acid (FA) groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted from milk infrared spectra using a large data set; (2) to predict genomic breeding values using a longitudinal single-step genomic BLUP approach; and (3) to conduct a single-step GWAS aiming to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA, and consequently, to understand the underlying biology of these traits. We used 629,769 test-day records of 201,465 first-parity Holstein cows from 6,105 herds. A total of 8,865 genotyped (Illumina BovineSNP50K BeadChip, Illumina, San Diego, CA) animals were considered for the genomic analyses. The average daily heritability ranged from 0.24 (unsaturated FA) to 0.47 (medium-chain and saturated FA). The reliability of the genomic breeding values ranged from 0.56 (long-chain fatty acid) to 0.74 (medium-chain fatty acid) when using the default τ and ω scaling parameters, whereas it ranged from 0.58 (long-chain fatty acid) to 0.73 (short-chain fatty acid) when using the optimal τ and ω values (i.e., τ = 1.5 and ω = 0.6), as defined in a previous study in the same population. Relevant chromosomal regions were identified in Bos taurus autosomes 5 and 14. The proportion of the variance explained by 20 adjacent single nucleotide polymorphisms ranged from 0.71% (saturated FA) to 15.12% (long-chain FA). Important candidate genes and pathways were also identified. In summary, our results contribute to a better understanding of the genetic architecture of predicted milk FA in dairy cattle and reinforce the relevance of using genomic information for genetic analyses of these traits.
Subject(s)
Cattle/genetics , Fatty Acids/metabolism , Milk/chemistry , Animals , Cattle/physiology , Fatty Acids, Unsaturated/metabolism , Female , Genomics , Genotype , Lactation/genetics , North America , Parity , Polymorphism, Single Nucleotide , Pregnancy , Reproducibility of Results , Selective BreedingABSTRACT
The multiple-lactation autoregressive test-day (AR) model is the adopted model for the national genetic evaluation of dairy cattle in Portugal. Under this model, animals' permanent environment effects are assumed to follow a first-order autoregressive process over the long (auto-correlations between parities) and short (auto-correlations between test-days within lactation) terms. Given the relevance of genomic prediction in dairy cattle, it is essential to include marker information in national genetic evaluations. In this context, we aimed to evaluate the feasibility of applying the single-step genomic (G)BLUP to analyze milk yield using the AR model in Portuguese Holstein cattle. In total, 11,434,294 test-day records from the first 3 lactations collected between 1994 and 2017 and 1,071 genotyped bulls were used in this study. Rank correlations and differences in reliability among bulls were used to compare the performance of the traditional (A-AR) and single-step (H-AR) models. These 2 modeling approaches were also applied to reduced data sets with records truncated after 2012 (deleting daughters of tested bulls) to evaluate the predictive ability of the H-AR. Validation scenarios were proposed, taking into account young and proven bulls. Average EBV reliabilities, empirical reliabilities, and genetic trends predicted from the complete and reduced data sets were used to validate the genomic evaluation. Average EBV reliabilities for H-AR (A-AR) using the complete data set were 0.52 (0.16) and 0.72 (0.62) for genotyped bulls with no daughters and bulls with 1 to 9 daughters, respectively. These results showed an increase in EBV reliabilities of 0.10 to 0.36 when genomic information was included, corresponding to a reduction of up to 43% in prediction error variance. Considering the 3 validation scenarios, the inclusion of genomic information improved the average EBV reliability in the reduced data set, which ranged, on average, from 0.16 to 0.26, indicating an increase in the predictive ability. Similarly, empirical reliability increased by up to 0.08 between validation tests. The H-AR outperformed A-AR in terms of genetic trends when unproven genotyped bulls were included. The results suggest that the single-step GBLUP AR model is feasible and may be applied to national Portuguese genetic evaluations for milk yield.
Subject(s)
Cattle/genetics , Milk/metabolism , Animals , Breeding , Cattle/physiology , Data Collection , Ethnicity , Exercise Test , Female , Genome , Genomics/methods , Genotype , Humans , Lactation , Male , Models, Genetic , Parity , Phenotype , Portugal , Reproducibility of ResultsABSTRACT
The present study investigated the improvement of prediction reliabilities for 3 production traits in Brazilian Holsteins that had no genotype information by adding information from Nordic and French Holstein bulls that had genotypes. The estimated across-country genetic correlations (ranging from 0.604 to 0.726) indicated that an important genotype by environment interaction exists between Brazilian and Nordic (or Nordic and French) populations. Prediction reliabilities for Brazilian genotyped bulls were greatly increased by including data of Nordic and French bulls, and a 2-trait single-step genomic BLUP performed much better than the corresponding pedigree-based BLUP. However, only a minor improvement in prediction reliabilities was observed in nongenotyped Brazilian cows. The results indicate that although there is a large genotype by environment interaction, inclusion of a foreign reference population can improve accuracy of genetic evaluation for the Brazilian Holstein population. However, a Brazilian reference population is necessary to obtain a more accurate genomic evaluation.