Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
ACS Nano ; 18(34): 23090-23103, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39143650

ABSTRACT

Actin- and microtubule (MT)-based transport systems are essential for intracellular transport. During influenza A virus (IAV) infection, MTs provide long tracks for virus trafficking toward the nucleus. However, the role of the actin cytoskeleton in IAV entry and especially the transit process is still ambiguous. Here, by using quantum dot-based single-virus tracking, it was revealed that the actin cytoskeleton was crucial for the virus entry via clathrin-mediated endocytosis (CME). After entry via CME, the virus reached MTs through three different pathways: the virus (1) was driven by myosin VI to move along actin filaments to reach MTs (AF); (2) was propelled by actin tails assembled by an Arp2/3-dependent mechanism to reach MTs (AT); and (3) directly reached MTs without experiencing actin-related movement (NA). Therefore, the NA pathway was the main one and the fastest for the virus to reach MTs. The AT pathway was activated only when plenty of viruses entered the cell. The viruses transported by the AF and AT pathways shared similar moving velocities, durations, and displacements. This study comprehensively visualized the role of the actin cytoskeleton in IAV entry and transport, revealing different pathways for IAV to reach MTs after entry. The results are of great significance for globally understanding IAV infection and the cellular endocytic transport pathway.


Subject(s)
Endocytosis , Influenza A virus , Microtubules , Quantum Dots , Quantum Dots/chemistry , Microtubules/metabolism , Microtubules/virology , Humans , Influenza A virus/physiology , Virus Internalization , Animals , Dogs , Madin Darby Canine Kidney Cells , Actin Cytoskeleton/metabolism
2.
ACS Nano ; 18(37): 25893-25905, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39214619

ABSTRACT

After entering host cells by endocytosis, influenza A virus (IAV) is transported along microfilaments and then transported by dynein along microtubules (MTs) to the perinuclear region for genome release. Understanding the mechanisms of dynein-driven transport is significant for a comprehensive understanding of IAV infection. In this work, the roles of dynactin in dynein-driven transport of IAV were quantitatively dissected in situ using quantum dot-based single-virus tracking. It was revealed that dynactin was essential for dynein to transport IAV toward the nucleus. After virus entry, virus-carrying vesicles bound to dynein and dynactin before being delivered to MTs. The attachment of dynein to the vesicles was dependent on dynactin and its subunits, p150Glued and Arp1. Once viruses reached MTs, dynactin-assisted dynein initiates retrograde transport of IAV. Importantly, the retrograde transport of viruses could be initiated at both plus ends (32%) and other regions on MTs (68%). Subsequently, dynactin accompanied and assisted dynein to persistently transport the virus along MTs in the retrograde direction. This study revealed the dynactin-dependent dynein-driven transport process of IAV, enhancing our understanding of IAV infection and providing important insights into the cell's endocytic transport mechanism.


Subject(s)
Dynactin Complex , Dyneins , Influenza A virus , Quantum Dots , Dynactin Complex/metabolism , Dyneins/metabolism , Quantum Dots/chemistry , Quantum Dots/metabolism , Humans , Influenza A virus/metabolism , Biological Transport , Animals , Microtubules/metabolism , Dogs , Madin Darby Canine Kidney Cells , A549 Cells
3.
Nano Lett ; 24(8): 2544-2552, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349341

ABSTRACT

Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.


Subject(s)
Quantum Dots , Virus Diseases , Viruses , Humans , Viral Envelope/metabolism , Viral Envelope Proteins
4.
Nano Lett ; 24(9): 2821-2830, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407052

ABSTRACT

Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.


Subject(s)
Oligopeptides , Quantum Dots , Viruses , Streptavidin , Virion
5.
Cell Chem Biol ; 31(3): 487-501.e7, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38232732

ABSTRACT

Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.


Subject(s)
HIV-1 , Proviruses , Humans , Single Molecule Imaging , Proteins/metabolism , Peptides/metabolism
6.
ACS Nano ; 18(4): 2928-2947, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38241476

ABSTRACT

The HIV-1 core consists of a cone-shaped capsid shell made of capsid protein (CA) hexamers and pentamers encapsulating the viral genome. HIV-1 capsid disassembly, referred to as uncoating, is important for productive infection; however, the location, timing, and regulation of uncoating remain controversial. Here, we employ amber codon suppression to directly label CA. In addition, a fluid phase fluorescent probe is incorporated into the viral core to detect small defects in the capsid lattice. This double-labeling strategy enables the visualization of uncoating of single cores in vitro and in living cells, which we found to always proceed through at least two distinct steps─the formation of a defect in the capsid lattice that initiates gradual loss of CA below a detectable level. Importantly, intact cores containing the fluid phase and CA fluorescent markers enter and uncoat in the nucleus, as evidenced by a sequential loss of both markers, prior to establishing productive infection. This two-step uncoating process is observed in different cells, including a macrophage line. Notably, the lag between the release of fluid phase marker and terminal loss of CA appears to be independent of the cell type or reverse transcription and is much longer (>5-fold) for nuclear capsids compared to cell-free cores or cores in the cytosol, suggesting that the capsid lattice is stabilized by capsid-binding nuclear factors. Our results imply that intact HIV-1 cores enter the cell nucleus and that uncoating is initiated through a localized defect in the capsid lattice prior to a global loss of CA.


Subject(s)
HIV Infections , HIV-1 , Humans , Capsid Proteins/genetics , Capsid/metabolism , HIV-1/metabolism
7.
Sci Bull (Beijing) ; 69(4): 502-511, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37993331

ABSTRACT

Viral envelope fusion with the host plasma membrane (PM) for genome release is a hallmark step in the life cycle of many enveloped viruses. This process is regulated by a complex network of biomolecules on the PM, but robust tools to precisely elucidate the dynamic mechanisms of virus-PM fusion events are still lacking. Here, we developed a quantitative single-virus tracking approach based on highly efficient dual-color labelling of viruses and batch trajectory analysis to achieve the spatiotemporal quantification of fusion events. This approach allows us to comprehensively analyze the membrane fusion mechanism utilized by pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the single-virus level and precisely elucidate how the relevant biomolecules synergistically regulate the fusion process. Our results revealed that SARS-CoV-2 may promote the formation of supersaturated clusters of cholesterol to facilitate the initiation of the membrane fusion process and accelerate the viral genome release.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/metabolism , Spike Glycoprotein, Coronavirus/genetics , Cell Membrane/metabolism , Membrane Fusion
8.
J Virol ; 97(10): e0071423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37735152

ABSTRACT

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Subject(s)
Bass , Rhabdoviridae , Animals , Rhabdoviridae/metabolism , Bass/metabolism , rab5 GTP-Binding Proteins/metabolism , Endocytosis , Dynamins/metabolism , Microtubules/metabolism , Clathrin/metabolism , Hydrogen-Ion Concentration , Virus Internalization
9.
ACS Nano ; 17(17): 17436-17450, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37589658

ABSTRACT

Despite extensive efforts, the principal sites of productive HIV-1 entry in different target cells─plasma membrane (PM) vs endosomes─remain controversial. To delineate the site(s) of HIV-1 fusion, we implemented a triple labeling approach that involves tagging pseudoviruses with the fluid-phase viral content marker, iCherry, the viral membrane marker, DiD, and the extraviral pH sensor, ecliptic pHluorin. The viral content marker iCherry is released into the cytoplasm upon virus-cell fusion irrespective of the sites of fusion. In contrast, the extent of dilution of the membrane marker upon fusion with the PM (loss of signal) vs the endosomal membrane (no change in punctate DiD appearance) discriminates between the principal sites of viral fusion. Additionally, ecliptic pHluorin incorporated into the viral membrane reports whether virus fusion occurs in acidic endosomes. Real-time single virus imaging in living HeLa-derived cells, a CD4+ T-cell line, and activated primary human CD4+ T-cells revealed a strong (80-90%) HIV-1 preference for fusion with endosomes. Intriguingly, we observed HIV-1 fusion only with pH-neutral intracellular vesicles and never with acidified endosomes. These endocytic fusion events are likely culminating in productive infection since endocytic inhibitors, such as EIPA, Pitstop2, and Dynasore, as well as a dominant-negative dynamin-2 mutant, inhibited HIV-1 infection in HeLa-derived and primary CD4+ T-cells. Furthermore, the inhibition of endocytosis in HeLa-derived cells promoted hemifusion at the PM but abrogated complete fusion. Collectively, these data reveal that the primary HIV-1 entry pathway in diverse cell types is through fusion with pH-neutral intracellular vesicles.


Subject(s)
HIV-1 , Humans , CD4-Positive T-Lymphocytes , Transport Vesicles , HeLa Cells , Hydrogen-Ion Concentration
10.
J Virol ; 97(4): e0021023, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36975780

ABSTRACT

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Subject(s)
Alphacoronavirus , Caveolae , Clathrin , Pinocytosis , Virus Internalization , rab GTP-Binding Proteins , Alphacoronavirus/physiology , rab GTP-Binding Proteins/metabolism , Endosomes/metabolism , Coronavirus Infections/metabolism , Hydrogen-Ion Concentration , Dynamins/metabolism , Caveolae/metabolism , Cholesterol/metabolism , Clathrin/metabolism , Pinocytosis/physiology , Vero Cells , Chlorocebus aethiops , Animals
11.
J Microbiol Immunol Infect ; 56(2): 257-266, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36127231

ABSTRACT

BACKGROUND: The exploration of virology knowledge was limited by the optical technology for the observation of virus. Previously, a three-dimensional multi-resolution real-time microscope system (3D-MRM) was developed to observe the uptake of HIV-1-tat peptide-modified nanoparticles in cell membrane. In this study, we labeled HIV-1 virus-like particles (VLPs) with passivated giant quantum dots (gQDs) and recorded their interactive trajectories with human Jurkat CD4 cells through 3D-MRM. METHODS: The labeled of gQDs of the HIV-1 VLPs in sucrose-gradient purified viral lysates was first confirmed by Cryo-electronic microscopy and Western blot assay. After the infection with CD4 cells, the gQD-labeled VLPs were visualized and their extracellular and intracellular trajectories were recorded by 3D-MRM. RESULTS: A total of 208 prime trajectories was identified and classified into three distinct patterns: cell-free random diffusion pattern, directional movement pattern and cell-associated movement pattern, with distributions and mean durations were 72.6%/87.6 s, 9.1%/402.7 s and 18.3%/68.7 s, respectively. Further analysis of the spatial-temporal relationship between VLP trajectories and CD4 cells revealed the three stages of interactions: (1) cell-associated (extracellular) diffusion stage, (2) cell membrane surfing stage and (3) intracellular directional movement stage. CONCLUSION: A complete trajectory of HIV-1 VLP interacting with CD4 cells was presented in animation. This encapsulating method could increase the accuracy for the observation of HIV-1-CD4 cell interaction in real time and three dimensions.


Subject(s)
CD4-Positive T-Lymphocytes , Cell Membrane , HIV-1 , Microscopy, Electron , Quantum Dots , tat Gene Products, Human Immunodeficiency Virus , Humans , CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/ultrastructure , CD4-Positive T-Lymphocytes/virology , HIV-1/physiology , HIV-1/ultrastructure , Imaging, Three-Dimensional/methods , tat Gene Products, Human Immunodeficiency Virus/physiology , Cell-Penetrating Peptides/physiology , Cell Membrane/physiology , Cell Membrane/ultrastructure , Cell Membrane/virology , Nanoparticles/ultrastructure , Nanoparticles/virology , Artificial Virus-Like Particles/physiology , Microscopy, Electron/methods
12.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35215933

ABSTRACT

The viral polyprotein Gag plays a central role for HIV-1 assembly, release and maturation. Proteolytic processing of Gag by the viral protease is essential for the structural rearrangements that mark the transition from immature to mature, infectious viruses. The timing and kinetics of Gag processing are not fully understood. Here, fluorescence lifetime imaging microscopy and single virus tracking are used to follow Gag processing in nascent HIV-1 particles in situ. Using a Gag polyprotein labelled internally with eCFP, we show that proteolytic release of the fluorophore from Gag is accompanied by an increase in its fluorescence lifetime. By tracking nascent virus particles in situ and analyzing the intensity and fluorescence lifetime of individual traces, we detect proteolytic cleavage of eCFP from Gag in a subset (6.5%) of viral particles. This suggests that for the majority of VLPs, Gag processing occurs with a delay after particle assembly.


Subject(s)
HIV Infections/virology , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Fluorescence , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HIV-1/chemistry , HIV-1/genetics , HIV-1/growth & development , Humans , Kinetics , Microscopy, Fluorescence , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
13.
J Virol ; 96(5): e0181321, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35020471

ABSTRACT

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that sphingomyelin (SM)-sequestered cholesterol, but not accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol independent, whereas the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein that activates actin nucleation, is recruited to the IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of the CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. IMPORTANCE IAV infects cells by harnessing cellular endocytic machineries. A better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in the plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results provide new insights into IAV infection and the pathway/cargo-specific involvement of the cholesterol pool(s).


Subject(s)
Cholesterol , Clathrin-Coated Vesicles , Fatty Acid-Binding Proteins , Formins , Influenza A virus , Virus Internalization , Actins/metabolism , Animals , Cholesterol/metabolism , Clathrin-Coated Vesicles/metabolism , Clathrin-Coated Vesicles/virology , Endocytosis/physiology , Fatty Acid-Binding Proteins/metabolism , Formins/metabolism , Influenza A virus/metabolism , Protein Domains , Sphingomyelins/metabolism , Transferrins/metabolism
14.
Small ; 18(2): e2104200, 2022 01.
Article in English | MEDLINE | ID: mdl-34786839

ABSTRACT

Many enveloped viruses utilize endocytic pathways and vesicle trafficking to infect host cells, where the acidification of virus-containing endosomes triggers the virus-endosome fusion events. Therefore, simultaneous correlation of intracellular location, local pH, and individual virus dynamics is important for gaining insight into viral infection mechanisms. Here, an imaging approach is developed for spatiotemporal quantification of endosomal acidification on the viral journey in host cells using a fluorescence resonance energy transfer based ratiometric pH sensor consisting of a photostable and high-brightness QD, pH-sensitive fluorescent dyes, and virus-binding proteins. Ratiometric analysis of sensor-based single-virus tracking data enables to dissect a two-step endosomal acidification process during the infection of influenza viruses and elucidates the occurrence of the fission and sorting of virus-containing endosomes to recycling endosomes after initial acidification. This technique should serve as a robust approach for in situ quantification of endosomal acidification on the viral journey.


Subject(s)
Orthomyxoviridae , Viruses , Endosomes/metabolism , Hydrogen-Ion Concentration , Protein Transport
15.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785615

ABSTRACT

Coronaviruses (CoVs) have caused severe diseases in humans and animals. Endocytic pathways, such as clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME), play an important role for CoVs to penetrate the cell membrane barrier. In this study, a novel CoV entry manner is unraveled in which clathrin and caveolae can cooperatively mediate endocytosis of porcine epidemic diarrhea coronavirus (PEDV). Using multicolor live-cell imaging, the dynamics of the fluorescently labeled clathrin structures, caveolae structures, and PEDV were dissected. During CavME of PEDV, we found that clathrin structures can fuse with caveolae near the cell plasma membrane, and the average time of PEDV penetrating the cell membrane was within ∼3 min, exhibiting a rapid course of PEDV entry. Moreover, based on the dynamic recruitment of clathrin and caveolae structures and viral motility, the direct evidence also shows that about 20% of PEDVs can undergo an abortive entry via CME and CavME. Additionally, the dynamic trafficking of PEDV from clathrin and caveolae structures to early endosomes, and from early endosomes to late endosomes, and viral fusion were directly dissected, and PEDV fusion mainly occurred in late endosomes within ∼6.8 min after the transport of PEDV to late endosomes. Collectively, this work systematically unravels the early steps of PEDV infection, which expands our understanding of the mechanism of CoV infection.IMPORTANCE Emerging and re-emerging coronaviruses cause serious human and animal epidemics worldwide. For many enveloped viruses, including coronavirus, it is evident that breaking the plasma membrane barrier is a pivotal and complex process, which contains multiple dynamic steps. Although great efforts have been made to understand the mechanisms of coronavirus endocytic pathways, the direct real-time imaging of individual porcine epidemic diarrhea coronavirus (PEDV) internalization has not been achieved yet. In this study, we not only dissected the kinetics of PEDV entry via clathrin-mediated endocytosis and caveolae-mediated endocytosis and the kinetics of endosome trafficking and viral fusion but also found a novel productive coronavirus entry manner in which clathrin and caveolae can cooperatively mediate endocytosis of PEDV. Moreover, we uncovered the existence of PEDV abortive endocytosis. In summary, the productive PEDV entry via the cooperation between clathrin and caveolae structures and the abortive endocytosis of PEDV provide new insights into coronavirus penetrating the plasma membrane barrier.


Subject(s)
Caveolae/metabolism , Clathrin/metabolism , Endocytosis/physiology , Porcine epidemic diarrhea virus/metabolism , Virus Internalization , Animals , Cell Line , Cell Membrane/virology , Chlorocebus aethiops , Coronavirus Infections , Swine , Swine Diseases/virology , Vero Cells
16.
Article in English | MEDLINE | ID: mdl-33511770

ABSTRACT

Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drug for most of the viruses emphasizes the rapid and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Nanotechnology is an emerging field with applications in various domains, where nano-biomedical science has many significant contributions such as effective delivery of drugs/therapeutic molecules to specific organs, imaging, sensitive detection of virus, and their accurate tracking in host cells. The nanomaterials reported for virus detection and tracking mainly include magnetic and gold NPs, ZnO/Pt-Pd, graphene, and quantum dots (QDs). In addition, the single virus tracking technology (SVT) allowed to track the life cycle stages of an individual virus for better understanding of their dynamics within the living cells. Inorganic as well as non-metallic fluorescent materials share the advantages of high photochemical stability, a wide range of light absorption curves and polychromatic emission. Hence, are considered as potential fluorescent nano-probes for SVT. However, there are still some challenges: (i) clinical false positive rate of some detection methods is still high; (ii) in the virus tracking process, less adaptability of QDs owing to larger size, flicker, and possible interference with virus function; and (iii) in vivo tracking of a single virus, in real time needs further refinement. In the future, smaller, non-toxic, and chemically stable nanomaterials are needed to improve the efficiency and accuracy of detection, and monitoring of virus infections to curb the mortalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Subject(s)
Nanostructures , Nanotechnology , Quantum Dots , Virus Diseases/diagnosis , Viruses/isolation & purification , Fluorescent Dyes
17.
Viruses ; 12(12)2020 12 21.
Article in English | MEDLINE | ID: mdl-33371254

ABSTRACT

Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.


Subject(s)
Membrane Fusion , Retroviridae Infections/virology , Spumavirus/physiology , Virus Internalization , Virus Replication , Humans , Life Cycle Stages , Models, Biological , Virion/physiology
18.
mBio ; 11(3)2020 05 19.
Article in English | MEDLINE | ID: mdl-32430465

ABSTRACT

Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.


Subject(s)
Encephalitis Viruses, Japanese/chemistry , Membrane Lipids/chemistry , Quantum Dots , Single-Cell Analysis/methods , Staining and Labeling/methods , Animals , Biotin/metabolism , Chlorocebus aethiops , Cricetinae , Dogs , Madin Darby Canine Kidney Cells , Microscopy, Fluorescence/methods , Streptavidin/metabolism , Vero Cells
19.
Nano Lett ; 20(2): 1417-1427, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31930919

ABSTRACT

Labeling viruses with high-photoluminescence quantum dots (QDs) for single virus tracking provides a visual tool to aid our understanding of viral infection mechanisms. However, efficiently labeling internal viral components without modifying the viral envelope and capsid remains a challenge, and existing strategies are not applicable to most viruses. Here, we have devised a strategy using the clustered regularly interspaced short palindromic repeats (CRISPR) imaging system to label the nucleic acids of Pseudorabies virus (PRV) with QDs. In this strategy, QDs were conjugated to viral nucleic acids with the help of nuclease-deactivated Cas9/gRNA complexes in the nuclei of living cells and then packaged into PRV during virion assembly. The processes of PRV-QD adsorption, cytoplasmic transport along microtubules, and nuclear entry were monitored in real time in both Vero and HeLa cells, demonstrating the utility and efficiency of the strategy in the study of viral infection.


Subject(s)
CRISPR-Cas Systems/genetics , Herpesvirus 1, Suid/isolation & purification , Quantum Dots/chemistry , Virion/isolation & purification , Capsid , HeLa Cells , Herpesvirus 1, Suid/ultrastructure , Humans , Virion/genetics
20.
Virol Sin ; 35(4): 407-416, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31872331

ABSTRACT

Quantum dots (QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time. The porcine reproductive and respiratory syndrome virus (PRRSV) is a small virus with the virion size of 40-60 nm which causes great economic losses to the swine industry worldwide. A clear understanding of the viral infection mechanism is essential for the development of effective antiviral strategies. In this study, we labeled the PRRSV with QDs using the streptavidin-biotin labeling system and monitored the viral infection process in live cells. Our results indicated that the labeling method had negligible effect on viral infectivity. We also observed that prior to the entry, PRRSV vibrated on the plasma membrane, and entered the cells via endosome mediated cell entry pathway. Viruses moved in a slow-fast-slow oscillatory movement pattern and finally accumulated in a perinuclear region of the cell. Our results also showed that once inside the cell, PRRSV moved along the microtubule, microfilament and vimentin cytoskeletal elements. During the transport process, virus particles also made contacts with non-muscle myosin heavy chain II-A (NMHC II-A), visualized as small spheres in cytoplasm. This study can facilitate the application of QDs in virus infection imaging, especially the smaller-sized viruses and provide some novel and important insights into PRRSV infection mechanism.


Subject(s)
Porcine respiratory and reproductive syndrome virus/physiology , Quantum Dots , Single Molecule Imaging/methods , Animals , Biotinylation , Cell Line , Chlorocebus aethiops , Microscopy, Electron, Transmission/methods , Swine , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL