Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159758

ABSTRACT

The paper reports on a new mathematical model, starting with the original Hill equation which is derived to describe cell viability (V) while testing nanomaterials (NMs). Key information on the sample's morphology, such as mean size (⟨s⟩) and size dispersity (σ) is included in the new model via the lognormal distribution function. The new Hill-inspired equation is successfully used to fit MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) data from assays performed with the HepG2 cell line challenged by fluorine-containing graphene quantum dots (F:GQDs) under light (400-700 nm wavelength) and dark conditions. The extracted "biological polydispersity" (light: ⟨sMTT⟩=1.77±0.02 nm and σMTT=0.21±0.02); dark: ⟨sMTT⟩=1.87±0.02 nm and σMTT=0.22±0.01) is compared with the "morphological polydispersity" (⟨sTEM⟩=1.98±0.06 nm and σTEM=0.19±0.03), the latter obtained from TEM (transmission electron microscopy). The fitted data are then used to simulate a series of V responses. Two aspects are emphasized in the simulations: (i) fixing σ, one simulates V versus ⟨s⟩ and (ii) fixing ⟨s⟩, one simulates V versus σ. Trends observed in the simulations are supported by a phenomenological model picture describing the monotonic reduction in V as ⟨s⟩ increases (V~pa/(s)p-a; p and a are fitting parameters) and accounting for two opposite trends of V versus σ: under light (V~σ) and under dark (V~1/σ).

2.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29237862

ABSTRACT

In tropical tree communities, processes occurring during early life stages play a critical role in shaping forest composition and diversity through differences in species' performance. Predicting the future of tropical forests depends on a solid understanding of the drivers of seedling survival. At the same time, factors determining spatial and temporal patterns of seedling survival can play a large role in permitting species coexistence in diverse communities. Using long-term data on the survival of more than 45 000 seedlings of 238 species in a Neotropical forest, we assessed the relative importance of key abiotic and biotic neighbourhood variables thought to influence individual seedling survival and tested whether species vary significantly in their responses to these variables, consistent with niche differences. At the community level, seedling survival was significantly correlated with plant size, topographic habitat, neighbourhood densities of conspecific seedlings, conspecific and heterospecific trees and annual variation in water availability, in descending order of effect size. Additionally, we found significant variation among species in their sensitivity to light and water availability, as well as in their survival within different topographic habitats, indicating the potential for niche differentiation among species that could allow for species coexistence.


Subject(s)
Ecosystem , Rainforest , Seedlings/growth & development , Trees/growth & development , Longevity , Panama , Population Density , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL