Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.246
Filter
1.
Drug Discov Today ; : 104074, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950729

ABSTRACT

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and small bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.

2.
Biochem Biophys Res Commun ; 729: 150372, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981400

ABSTRACT

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.

3.
Mol Biol Rep ; 51(1): 737, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874790

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genetic Therapy/methods , Animals , Drug Resistance, Neoplasm/genetics
4.
Cancer Genomics Proteomics ; 21(4): 327-349, 2024.
Article in English | MEDLINE | ID: mdl-38944427

ABSTRACT

We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.


Subject(s)
Pancreatic Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Animals , Molecular Targeted Therapy/methods
5.
Curr Mol Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918983

ABSTRACT

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

6.
Ann Acad Med Singap ; 53(2): 113-116, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38920235

ABSTRACT

Ribonucleic acid (RNA) therapeutics hold great potential for the advancement of dermatological treatments due to, among other reasons, the possibility of treating previously undruggable targets, high specificity with minimal side effects, and ability to include multiple RNA targets in a single product. Although there have been research relating to RNA therapeutics for decades, there have not been many products translated for clinical use until recently. This may be because of challenges to the application of RNA therapeutics, including the dearth of effective modes of delivery to the target, and rapid degradation of RNA in the human body and environment. This article aims to provide insight on (1) the wide-ranging possibilities of RNA therapeutics in the field of dermatology as well as (2) how key challenges can be addressed, so as to encourage the development of novel dermatological treatments. We also share our experience on how RNA therapeutics have been applied in the management of hypertrophic and keloid scars.


Subject(s)
Keloid , Humans , Keloid/therapy , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/drug therapy , RNA/therapeutic use , Dermatology/methods , Skin Diseases/therapy , Skin Diseases/drug therapy , Genetic Therapy/methods
7.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927048

ABSTRACT

Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Molecular Targeted Therapy , RNA, Small Interfering , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , RNA Interference
8.
J Nanobiotechnology ; 22(1): 348, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898486

ABSTRACT

Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.


Subject(s)
Immunotherapy , Liver Neoplasms , RNA, Small Interfering , Animals , Mice , Immunotherapy/methods , Humans , Liver Neoplasms/therapy , Cell Line, Tumor , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , RNA-Binding Proteins/metabolism , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
9.
Curr Mol Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38859785

ABSTRACT

Gene silencing through RNA interference (RNAi) technology has provided forceful therapeutic modalities to specific knockdown of the genes' expression related to diseases. Small interfering RNAs (siRNAs) can start a process that specifically degrades and silences the expression of cognate mRNAs. These RNA interference processes could effectively adjust many biological processes, including immune responses. Dendritic cells (DCs) are specialist antigen-presenting cells with potent functions in regulating innate and adaptive immunity. SiRNAs performed vital roles in coordinating immune processes mediated by DCs. This review describes the findings that shed light on the significance of siRNAs in DC immune regulation and highlight their potential applications for improving DC-based immunotherapies.

10.
Pharmaceutics ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931900

ABSTRACT

Insufficient endosomal escape presents a major hurdle for successful nucleic acid therapy. Here, for the first time, a chemical electron transfer (CET) system was integrated into small interfering RNA (siRNA) lipid nanoparticles (LNPs). The CET acceptor can be chemically excited using the generated energy between the donor and hydrogen peroxide, which triggers the generation of reactive oxygen species (ROS), promoting endosomal lipid membrane destabilization. Tetra-oleoyl tri-lysino succinoyl tetraethylene pentamine was included as an ionizable lipopeptide with a U-shaped topology for effective siRNA encapsulation and pH-induced endosomal escape. LNPs loaded with siRNA and CET components demonstrated a more efficient endosomal escape, as evidenced by a galectin-8-mRuby reporter; ROS significantly augmented galectin-8 recruitment by at least threefold compared with the control groups, with a p value of 0.03. Moreover, CET-enhanced LNPs achieved a 24% improvement in apoptosis level by knocking down the tumor-protective gene nuclear factor erythroid 2-related factor 2, boosting the CET-mediated ROS cell killing.

11.
Curr Drug Deliv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698743

ABSTRACT

Liver cancer is the sixth most common cancer and the fourth leading cause of death worldwide. Hepatocellular carcinoma (HCC) comprises 75-80% of liver cancer cases. Therapeutic strategies for HCC are available and have been shown to prolong survival but not treat HCC. Gene expression and regulation are responsible for the pathogenesis and progression of HCC. Altering these genetic networks can impact cellular behaviors and in turn cure HCC. Single-stranded and double-stranded non-coding ribonucleic acid known as microRNA and small interfering RNA, respectively have been investigated as possible therapeutic options. Currently, efficient delivery systems that ensure cell-specific targeting and efficient transfection into tumor cells are still under investigation. Viral vectors have been studied extensively, but immunogenicity hinders their use as delivery systems. Non-viral vectors which include inorganic, lipid, or polymeric nanoparticles are promising delivery systems. However, there are a lot of challenges during the formulation of such systems to ensure efficient and specific delivery. In vitro and in vivo studies have investigated different LNPs to deliver miRNA or siRNA. In this review, we highlight the role of LNPs as a delivery system for miRNA and siRNA in HCC in addition to the latest results achieved using this approach.

12.
ACS Synth Biol ; 13(6): 1906-1915, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38733599

ABSTRACT

Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/µg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.


Subject(s)
RNA, Small Interfering , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Humans , Synthetic Biology/methods , RNA, Transfer/genetics , RNA, Transfer/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Plant Cell Environ ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798197

ABSTRACT

The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.

14.
Plant Signal Behav ; 19(1): 2358270, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38796845

ABSTRACT

Trans-acting small interfering RNAs (tasiRNAs) are 21-nt phased (phased siRNAs) resulting from successive DCL-catalyzed processing from the end of a double-stranded RNA substrate originating from the RDR of an AGO-catalyzed cleaved RNA at a micro RNA target site. Plant tasiRNAs have been synthesized to produce synthetic tasiRNAs (syn-tasiRNAs) targeting viral RNAs that confer viral resistance. In this study, we engineered syn-tasiRNAs to target potato virus Y (PVY) infection by replacing five native siRNAs of TAS1c with 210-bp fragments from the coat protein (CP) region of the PVY genome. The results showed that the transient expression of syn-tasiR-CPpvy2 in Nicotiana benthamiana (N. benthamiana) plants conferred antiviral resistance, supported by the absence of PVY infection symptoms and viral accumulation. This indicated that syn-tasiR-CPpvy2 successfully targeted and silenced the PVY CP gene, effectively inhibiting viral infection. syn-tasiR-CPpvy1 displayed attenuated symptoms and decreased viral accumulation in these plants However, severe symptoms of PVY infection and a similar amount of viral accumulation as the control were observed in plants expressing syn-tasiR-CPpvy3. syn-tasiR-CPpvy/pvx, which targets both PVY and potato virus X (PVX), was engineered using a single precursor. After the transient expression of syn-tasiR-CPpvy/pvx3 and syn-tasiR-CPpvy/pvx5 in N. benthamiana, the plants were resistant to both PVY and PVX. These results suggested that engineered syn-tasiRNAs could not only specifically induce antiviral resistance against one target virus but could also be designed for multi-targeted silencing of different viruses, thereby preventing complex virus infection in plants.


Subject(s)
Capsid Proteins , Disease Resistance , Nicotiana , Plant Diseases , Potyvirus , RNA, Small Interfering , Nicotiana/virology , Nicotiana/genetics , Nicotiana/immunology , Capsid Proteins/metabolism , Capsid Proteins/genetics , Potyvirus/physiology , Plant Diseases/virology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Plants, Genetically Modified/virology
15.
Int J Pharm ; 657: 124159, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38701907

ABSTRACT

Inhibiting the expression of tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine widely distributed in the serum and synovial fluid, is important for managing rheumatoid arthritis (RA). Despite the good therapeutic effects of TNF-α small interfering RNA (TNF-α siRNA) in RA animal models, safe and efficient siRNA delivery systems that retain stability are lacking. We introduced a novel therapy using milk-derived exosomes(mEXOs)-encapsulated TNF-α siRNA-coated cryomicroneedle (cryoMN) patch and evaluated its efficacy via local transdermal administration through acupoints in RA treatment. The loading of TNF-α siRNAs into mEXOs was achieved by sonication, the loading rate, stability, and in vitro release of mEXOs-TNF-α siRNA were determined. The cryoMNs were prepared by micromolding, morphology, drug loading, and mechanical strength of the cryoMN array were analyzed. The loading efficiency of TNF-α siRNA was up to 21% and each cryoMN contained 39.6 ± 1.29 µg of TNF-α siRNA. Frozen sections penetrated 523 ± 63 µm deep. In vitro experiments have shown that mEXOs-TNF-α siRNA cryoMNs have good biocompatibility and inhibit the proliferation of HFLS-RA cells. In vivo pharmacodynamics studies found that general conditions, changes in microcirculation indexes, synovial histopathological changes, and expression of related proteins in the synovial tissue in RA rabbits were effectively alleviated by mEXOs-TNF-α siRNA cryoMNs. Improvement of each index at acupoints was greater than that at non-acupoints. Our findings facilitate the development of cryoMNs combined with exosomes and acupoints drug delivery for the treatment of RA. The combination of exosomes and cryoMNs will enable the development of new-generation microneedle-based treatments.


Subject(s)
Administration, Cutaneous , Arthritis, Rheumatoid , Exosomes , Milk , RNA, Small Interfering , Tumor Necrosis Factor-alpha , Animals , Arthritis, Rheumatoid/therapy , RNA, Small Interfering/administration & dosage , Rabbits , Humans , Milk/chemistry , Needles , Cell Line , Male , Drug Delivery Systems/methods
16.
Biomedicines ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790940

ABSTRACT

Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.

17.
ACS Appl Mater Interfaces ; 16(21): 27087-27101, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752799

ABSTRACT

An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.


Subject(s)
Carbon , RNA, Small Interfering , Transfection , Humans , HEK293 Cells , Carbon/chemistry , Transfection/methods , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Lipids/chemistry , Cations/chemistry , DNA/chemistry , Quantum Dots/chemistry , Gene Transfer Techniques , Oleic Acid/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Line, Tumor
18.
Article in English | MEDLINE | ID: mdl-38693628

ABSTRACT

The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.

19.
Front Plant Sci ; 15: 1387575, 2024.
Article in English | MEDLINE | ID: mdl-38736453

ABSTRACT

Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.

20.
Macromol Rapid Commun ; : e2400129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778746

ABSTRACT

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...