Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35808156

ABSTRACT

Mobile cognitive radio networks (MCRNs) have arisen as an alternative mobile communication because of the spectrum scarcity in actual mobile technologies such as 4G and 5G networks. MCRN uses the spectral holes of a primary user (PU) to transmit its signals. It is essential to detect the use of a radio spectrum frequency, which is where the spectrum sensing is used to detect the PU presence and avoid interferences. In this part of cognitive radio, a third user can affect the network by making an attack called primary user emulation (PUE), which can mimic the PU signal and obtain access to the frequency. In this paper, we applied machine learning techniques to the classification process. A support vector machine (SVM), random forest, and K-nearest neighbors (KNN) were used to detect the PUE in simulation and emulation experiments implemented on a software-defined radio (SDR) testbed, showing that the SVM technique detected the PUE and increased the probability of detection by 8% above the energy detector in low values of signal-to-noise ratio (SNR), being 5% above the KNN and random forest techniques in the experiments.


Subject(s)
Machine Learning , Support Vector Machine , Cognition , Radio Waves , Software
2.
Sensors (Basel) ; 21(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069877

ABSTRACT

In this work, a novel multiband spectrum sensing technique is implemented in the context of cognitive radios. This technique is based on multiresolution analysis (wavelets), machine learning, and the Higuchi fractal dimension. The theoretical contribution was developed before by the authors; however, it has never been tested in a real-time scenario. Hence, in this work, it is proposed to link several affordable software-defined radios to sense a wide band of the radioelectric spectrum using this technique. Furthermore, in this real-time implementation, the following are proposed: (i) a module for the elimination of impulsive noise, with which the appearance of sudden changes in the signal is reduced through the detail coefficients of the multiresolution analysis, and (ii) the management of different devices through an application that updates the information of each secondary user every 100 ms. The performance of these linked devices was evaluated with encouraging results: 95% probability of success for signal-to-noise ratio (SNR) values greater than 0 dB and just five samples (mean) in error of the edge detection (start and end) for a primary user transmission.

3.
Sensors (Basel) ; 21(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513689

ABSTRACT

Unmanned Aerial Vehicles (UAVs) demand technologies so they can not only fly autonomously, but also communicate with base stations, flight controllers, computers, devices, or even other UAVs. Still, UAVs usually operate within unlicensed spectrum bands, competing against the increasing number of mobile devices and other wireless networks. Combining UAVs with Cognitive Radio (CR) may increase their general communication performance, thus allowing them to execute missions where the conventional UAVs face limitations. CR provides a smart wireless communication which, instead of using a transmission frequency defined in the hardware, uses software transmission. CR smartly uses free transmission channels and/or chooses them according to application's requirements. Moreover, CR is considered a key enabler for deploying technologies that require high connectivity, such as Smart Cities, 5G, Internet of Things (IoT), and the Internet of Flying Things (IoFT). This paper presents an overview on the field of CR for UAV communications and its state-of-the-art, testbed alternatives for real data experiments, as well as specifications to build a simple and low-cost testbed, and indicates key opportunities and future challenges in the field.

4.
Entropy (Basel) ; 22(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-33286398

ABSTRACT

A very important task in Mobile Cognitive Radio Networks (MCRN) is to ensure that the system releases a given frequency when a Primary User (PU) is present, by maintaining the principle to not interfere with its activity within a cognitive radio system. Afterwards, a cognitive protocol must be set in order to change to another frequency channel that is available or shut down the service if there are no free channels to be found. The system must sense the frequency spectrum constantly through the energy detection method which is the most commonly used. However, this analysis takes place in the time domain and signals cannot be easily identified due to changes in modulation, power and distance from mobile users. The proposed system works with Gaussian Minimum Shift Keying (GMSK) and Orthogonal Frequency Division Multiplexing (OFDM) for systems from Global System for Mobile Communication (GSM) to 5G systems, the signals are analyzed in the frequency domain and the Rényi-Entropy method is used as a tool to distinguish the noise and the PU signal without prior knowledge of its features. The main contribution of this research is that uses a Software Defined Radio (SDR) system to implement a MCRN in order to measure the behavior of Primary and Secondary signals in both time and frequency using GNURadio and OpenBTS as software tools to allow a phone call service between two Secondary Users (SU). This allows to extract experimental results that are compared with simulations and theory using Rényi-entropy to detect signals from SU in GMSK and OFDM systems. It is concluded that the Rényi-Entropy detector has a higher performance than the conventional energy detector in the Additive White Gaussian Noise (AWGN) and Rayleigh channels. The system increases the detection probability (PD) to over 96% with a Signal to Noise Ratio (SNR) of 10dB and starting 5 dB below energy sensing levels.

SELECTION OF CITATIONS
SEARCH DETAIL