Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Chemosphere ; 362: 142745, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950741

ABSTRACT

Chemical coagulation has gained recognition as an effective technique to enhance the removal efficiency of pollutants in wastewater prior to their entry into a constructed wetland (CW) system. However, its potential impact on the chemical and microbial properties of soil and plant systems within CWs requires further research. This study investigated the impact of using ferric chloride (FeCl3) as a pre-treatment stage for dairy wastewater (DWW) on the chemical and microbial properties of water-soil-plant systems of replicated pilot-scale CWs, comparing them to CWs treating untreated DWW. CWs treating amended DWW had better performance than CWs treating raw DWW for all water quality parameters (COD, TSS, TP, and TN), ensuring compliance with the EU wastewater discharge directives. Soil properties remained mostly unaffected except for pH, calcium and phosphorus (P), which were lower in CWs treating amended DWW. As a result of lower nitrogen (N) and P loads, the plants in CWs receiving FeCl3-amended DWW had lower N and P contents than the plants of raw DWW CWs. However, the lower loads of P into amended DWW CWs did not limit the growth of Phragmites australis, which were able to accumulate trace elements higher than CWs receiving raw DWW. Alpha and Beta-diversity analysis revealed minor differences in community richness and composition between both treatments, with only 3.7% (34 genera) showed significant disparities. Overall, the application of chemical coagulation produced superior effluent quality without affecting the properties of soil and plant of CWs or altering the functioning of the microbial community.

2.
Proc Biol Sci ; 291(2025): 20240808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889791

ABSTRACT

Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with 'fast' life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality.


Subject(s)
Forests , Trees , Tropical Climate
3.
iScience ; 27(6): 109958, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38840843

ABSTRACT

Biochar obtained via microwave-assisted pyrolysis (MAP) at 720 W and 15 min from cocoa pod husk (CPH) is an efficient adsorbent of Cd2+(aq). Biochar of residual biomass of CPH (BCCPH) possesses favorable physicochemical and morphological properties, featuring a modest surface area yet a suitable porous structure. Adsorption, predominantly governed by physisorption, is influenced by the oxygen-containing active sites (-COOR, -C(R)O, and -CH2OR; R = H, alkyl). CdCO3 formation occurs during adsorption. Experimental data were well-fitted into various kinetic models for a broad understanding of the sorption process. Langmuir model indicates a maximum adsorption capacity of 14.694 mg/g. The thermodynamic study confirms the spontaneous and endothermic sorption. Studies at the molecular level have revealed that the Cd2+ ion tends to bind to surface aromatic carbon atoms. This sustainable approach produces BCCPH via MAP as a solution for waste transformation into water-cleaning materials.

4.
Environ Geochem Health ; 46(7): 233, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849572

ABSTRACT

Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.I. Acid Black 1 (AB 1), a sulfonated azo dye, inhibits nitrification and ammonification in the soil, lessens the nitrogen use efficacy in crop production and passes substantially unaltered through an activated sludge process. The retention of C.I. Acid Black 1 by raw and expanded perlite was investigated in order to examine the potential effectiveness of this aluminosilicate material toward organic waste cleanup. Dye adsorption proved spontaneous and endothermic in nature, increasing with temperature for both perlites. Expanded perlite having a more open structure exhibited a better performance compared to the raw material. Several of the most widely recognized two-parameter theoretical models, i.e., Langmuir, Freundlich, Temkin, Brunauer-Emmett-Teller (BET), Harkins-Jura, Halsey, Henderson, and Smith, were applied to reveal physicochemical features characterizing the adsorption. The Langmuir, Freundlich, Temkin, BET, Henderson, and Smith equations best fitted experimental data indicating that the adsorption of anionic dye on perlites is controlled by their surface, i.e., non-uniformity in structure and charge. This heterogeneity of surface is considered responsible for promoting specific dye adsorption areas creating dye "islands" with local dye supersaturations.


Subject(s)
Aluminum Oxide , Coloring Agents , Silicon Dioxide , Aluminum Oxide/chemistry , Adsorption , Silicon Dioxide/chemistry , Coloring Agents/chemistry , Naphthalenesulfonates/chemistry , Waste Management/methods , Azo Compounds/chemistry , Anthraquinones
5.
J Adv Res ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806098

ABSTRACT

BACKGROUND: Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW: Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW: Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.

6.
Chemosphere ; 359: 142361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761827

ABSTRACT

The abundance of microplastics (MPs) in soil environments has attracted significant attentions, due to their impact on soil physico-chemical properties. However, limited information is available on the influences of MPs on soil carbon composition and microbial utilization characteristics. Therefore, a two-month incubation experiment was conducted to add polyethylene microplastics (PE-MPs) with different levels (1%, 10%) and sizes (150-300 µm and 75-150 µm) into different soils. After that, soil chemical properties including the dissolved organic carbon (DOC), spectral characteristics of dissolved organic matter (DOM) and soil microbial characteristics were analyzed. Results revealed that PE-MPs addition caused significant differences in soil chemical properties between farmland and woodland soils, particularly in soil pH, DOM composition, and soil phosphatase activity. Woodland soil always exhibited higher levels of DOC content, microbial diversity, and soil carbon source utilization compared to farmland soil, leading to increased humification in the DOM of woodland soil. PE-MPs with a larger particle size significantly increased both the soil DOC content and enzyme activity. Addition of PE-MPs altered the soil DOM composition, and the fluorescence parameters like the biological index (BIX) and humification degree. Moreover, the carbon source utilization intensity of microorganisms on PE MPs-contaminated soils is higher in woodland soils. Various analyses confirmed that compared to other soil properties, characteristics of soil DOM had a more significant impact on soil microbial community composition. Thus, PE-MPs in conjunction with soil DOM spectral characteristics regulated soil microbial diversity, which is crucial for understanding soil carbon sequestration.


Subject(s)
Carbon , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Carbon/analysis , Microplastics/analysis , Humic Substances/analysis
7.
Oecologia ; 205(1): 121-133, 2024 May.
Article in English | MEDLINE | ID: mdl-38698245

ABSTRACT

Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.


Subject(s)
Fagus , Plant Roots , Soil , Plant Roots/anatomy & histology , Fagus/anatomy & histology , Phenotype
8.
Microorganisms ; 12(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38674660

ABSTRACT

Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.

9.
Sci Total Environ ; 926: 171786, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508248

ABSTRACT

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.


Subject(s)
Bryophyta , Cyanobacteria , Animals , Ecosystem , Soil/chemistry , Biota , Soil Microbiology
10.
Sci Total Environ ; 919: 170972, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38360318

ABSTRACT

Assessment and proper management of sites contaminated with heavy metals require precise information on the spatial distribution of these metals. This study aimed to predict and map the distribution of Cd, Cu, Ni, Pb, and Zn across the conterminous USA using point observations, environmental variables, and Histogram-based Gradient Boosting (HGB) modeling. Over 9180 surficial soil observations from the Soil Geochemistry Spatial Database (SGSD) (n = 1150), the Geochemical and Mineralogical Survey of Soils (GMSS) (n = 4857), and the Holmgren Dataset (HD) (n = 3400), and 28 covariates (100 m × 100 m grid) representing climate, topography, vegetation, soils, and anthropic activity were compiled. Model performance was evaluated on 20 % of the data not used in calibration using the coefficient of determination (R2), concordance correlation coefficient (ρc), and root mean square error (RMSE) indices. Uncertainty of predictions was calculated as the difference between the estimated 95 and 5 % quantiles provided by HGB. The model explained up to 50 % of the variance in the data with RMSE ranging between 0.16 (mg kg-1) for Cu and 23.4 (mg kg-1) for Zn, respectively. Likewise, ρc ranged between 0.55 (Cu) and 0.68 (Zn), respectively, and Zn had the highest R2 (0.50) among all predictions. We observed high Pb concentrations near urban areas. Peak concentrations of all studied metals were found in the Lower Mississippi River Valley. Cu, Ni, and Zn concentrations were higher on the West Coast; Cd concentrations were higher in the central USA. Clay, pH, potential evapotranspiration, temperature, and precipitation were among the model's top five important covariates for spatial predictions of heavy metals. The combined use of point observations and environmental covariates coupled with machine learning provided a reliable prediction of heavy metals distribution in the soils of the conterminous USA. The updated maps could support environmental assessments, monitoring, and decision-making with this methodology applicable to other soil databases, worldwide.

11.
Sci Total Environ ; 914: 169907, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185164

ABSTRACT

Deicing practices and infrastructure weathering can impact plants, soil, and water quality through the input and transport of base cations. Base cation accumulation in green stormwater infrastructure (GSI) soils has the potential to decrease soil infiltration rates and plant water uptake or to promote leaching of metals and nutrients. To understand base cation retention in GSI soils and its drivers, we sampled 14 GSI soils of different age, contributing areas, and infiltration areas, across 3 years. We hypothesized that soil, climate, and landscape drivers explain the spatial and temporal variability of GSI soil base cation concentrations. Sodium (Na), Calcium (Ca), and Magnesium (Mg) concentrations in GSI soils were higher than in reference soils, while Ca and Mg were similar to an urban floodplain soil. Neither the contributing area, contributing impervious area, nor their ratios to infiltration area predicted base cation concentrations. Age predicted the spatial variability of Potassium (K) concentrations. Ca and Mg were moderately predicted by sand and silt, while clay predicted Mg, and sand predicted K. However, no soil characteristics predicted Na concentrations. A subset of sites had elevated Na in Fall 2019, which followed a winter with many freezing events and higher-than-average deicer salt application. K in sites with elevated Na was lower than in non-elevated sites, suggesting that transient spikes of Na driven by deicer salt decreased the ability of GSI soils to accumulate K. These findings demonstrate the large variability of GSI soil base cation concentrations and the relative importance of soil, climate, and landscape drivers of base cation dynamics. High variability in GSI soil data is commonly observed and further research is needed to reduce uncertainties for modeling studies and design. Improved understanding of how GSI soil properties evolve over time, and their relation to GSI performance, will benefit GSI design and maintenance practices.

12.
Sci Total Environ ; 916: 170223, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266730

ABSTRACT

Agriculture in highly weathered tropical soils often requires considerable application of lime and fertilizers to ensure satisfactory plant nutrient levels. The consequences of these continue long-term applications is not well understood may induce changes in soil chemical properties, the abundance, and speciation of potentially toxic trace element and as well as of micronutrients in agriculture soils. In this study, we evaluated the adsorption (at pH 5) and speciation of Zn in tropical soils (both agricultural and native vegetation) as a function of fertilization and contact time using chemical fractionation analyses and X-ray absorption spectroscopy. The soils overall had high Zn adsorption capacities (∼ 700 mg kg-1), but the agricultural soil was approximately 30 % higher than of the soil under native vegetation, and the proportion of Zn in the mobile fraction was 35 % in native vegetation and 21 % in agricultural soils. Zn speciation via linear combination analysis showed a strong relationship with soil mineralogical composition and reveled that Zn associated with organic matter decreased while Zn associated with P increased after the conversion of soils from native vegetation to highly fertilized soil. Aluminosilicate soil minerals were identified as major sinks of soil Zn, accounting for 34 % of total Zn retention regardless of soil origin and land use. Association of Zn with phosphate (i.e., hopeite) was observed in the agricultural soil samples, which might be an unexpected Zn-bearing mineral in highly weathered tropical soils and could have impacts on Zn plant nutrition.


Subject(s)
Soil Pollutants , Trace Elements , Soil/chemistry , Zinc/analysis , Vegetables , Agriculture/methods , Trace Elements/analysis , Minerals , Soil Pollutants/analysis
13.
Chimia (Aarau) ; 77(11): 758-763, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38047843

ABSTRACT

Chemical elements such as copper and molybdenum are essential for animal and human health but may become toxic at elevated concentrations depending on the exposure and intake rate. Other elements such as mercury pose a threat to human health at already low concentrations. The soil acts as the main source of these elements for plant uptake and is thus driving accumulation along the food chain. However, in Switzerland, no nationwide information on elemental distributions in soils has existed up to now. The geochemical soil atlas of Switzerland will fill this gap by presenting the concentration ranges and the spatial distribution of 20 elements in the topsoil. In this summary, we present the methodological approaches and some main findings of the atlas with a focus on toxic elements as well as elements that can be or are toxic at higher concentrations.


Subject(s)
Copper , Food Chain , Animals , Humans , Switzerland , Biological Transport , Soil
14.
Chimia (Aarau) ; 77(11): 773-776, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38047845

ABSTRACT

The present paper introduces soil as a complex system, so a multidisciplinary approach is needed to study not only the composition, abundance, and transport of microplastics (MPs) in terrestrial ecosystems but also soil properties and processes involved in their degradation and/or interaction with soil polyphasic matrix. Despite many researchers focusing their studies on the impact of MPs on the terrestrial ecosystem over the past years, little has been done about the use of biochemical indicators to study their effect on soil functionality.


Subject(s)
Ecosystem , Microplastics , Plastics , Interdisciplinary Studies
15.
Life (Basel) ; 13(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38137877

ABSTRACT

Microtus thomasi (Rodentia: Arvicolinae), a fossorial vole endemic to the SW Balkans, uses a variety of substrates but its underground behavior remains poorly understood. This study examines the architecture and utilization of M. thomasi burrow systems in NW Peloponnese, Greece. In particular, eight burrow systems were meticulously excavated and studied, with comprehensive measurements taken of key characteristics, including length, depth, soil mounds, and surface openings. Key coordinates were recorded using a differential GPS device for detailed mapping and fractal dimension analysis using the box-counting method was employed to assess burrow system complexity. Soil samples were analyzed for particle size and chemical composition, and vegetation types at each site were identified. We did not find statistically significant correlations between size and complexity of the burrow systems and soil composition, altitude, or specific soil components. On the other hand, we did observe statistically significant differences in tunnel diameter between two burrow systems and in tunnel depth between more. Moreover, our study showed that more than one same-sex individual can occupy a single burrow system and not just an adult male-female pair, that was previously recorded, indicating the need for further study of the social behavior of this vole species. This study provides valuable insights into the underground behavior of M. thomasi by providing information on the features of its burrow systems, thus contributing to our understanding of its biology.

16.
Ecotoxicol Environ Saf ; 264: 115443, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37683428

ABSTRACT

As agroecology deteriorates, agricultural production is threatened by the combined stressors of exposure to environmental pollutants and pathogenic microbes. Proper agronomic practices for crop growth management and fertilization require understanding plant tolerance strategies. Both rice blast and heavy metals substantially impair rice crops, while silicon (Si) is an effective amendment to alleviate the combined stressors. Herein, this study was conducted to investigate the rice physiology and pathology perspective on the mechanism of Si alleviation against both lead (Pb) toxicity and Magnaporthe oryzae infection, utilizing pot experiments with inoculation of the virulent Magnaporthe oryzae strain. Exogenous Si reduced the phyto-availability and plant absorption of Pb, resulting in a 73.5% reduction in exchangeable Pb concentration in soil and a 40.23% reduction in rice plants. Furthermore, Si addition boosted the plant antioxidant system by increasing the activities of related enzymes, as the activities of catalase, superoxide dismutase, and polyphenol oxidase were significantly improved while the activity of peroxidase in rice panicles decreased. As a result, an improvement in dry matter quantity by 19.19% was observed compared to treatments without Si application, and the panicle blast severity (PBS) was reduced by 0.4-37.52%. Notwithstanding the interaction between the combined stressors, this study revealed that the speciation of Pb formation in the rhizosphere was the primary contributor to the alleviation of abiotic stresses, whereas the regulation of oxidative stress by enzymatic antioxidants played a dominant role in alleviating Magnaporthe oryzae colonization and impairments. The regulation process may reveal the mechanism of siliceous fertilizer functioning in the paddy system. Thereby the role of exogenous Si in anti-fungal, heavy metal toxicology, and plant physiology needs further study to fully elucidate the role of Si amendment, which is proposed to be considered from the perspective of soil chemistry and plant physiology.


Subject(s)
Ascomycota , Silicon , Silicon/pharmacology , Lead/toxicity , Environmental Pollution , Antioxidants
17.
iScience ; 26(7): 107102, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485366

ABSTRACT

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

18.
Mol Ecol ; 32(17): 4777-4790, 2023 09.
Article in English | MEDLINE | ID: mdl-37452724

ABSTRACT

Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.


Subject(s)
Orchidaceae , Wetlands , Ecosystem , Polyploidy , Acclimatization , Orchidaceae/genetics
19.
J Environ Manage ; 344: 118467, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37421817

ABSTRACT

The use of microalgae for nutrient recovery from wastewater and subsequent conversion of the harvested biomass into fertilizers offers a sustainable approach towards creating a circular economy. Nonetheless, the process of drying the harvested microalgae represents an additional cost, and its impact on soil nutrient cycling compared to wet algal biomass is not thoroughly understood. To investigate this, a 56-day soil incubation experiment was conducted to compare the effects of wet and dried Scenedesmus sp. microalgae on soil chemistry, microbial biomass, CO2 respiration, and bacterial community diversity. The experiment also included control treatments with glucose, glucose + ammonium nitrate, and no fertilizer addition. The Illumina Mi-Seq platform was used to profile the bacterial community and in-silico analysis was performed to assess the functional genes involved in N and C cycling processes. The maximum CO2 respiration and microbial biomass carbon (MBC) concentration of dried microalgae treatment were 17% and 38% higher than those of paste microalgae treatment, respectively. NH4+ and NO3- released slowly and through decomposition of microalgae by soil microorganisms as compared to synthetic fertilizer control. The results indicate that heterotrophic nitrification may contribute to nitrate production for both microalgae amendments, as evidenced by low amoA gene abundance and a decrease in ammonium with an increase in nitrate concentration. Additionally, dissimilatory nitrate reduction to ammonium (DNRA) may be contributing to ammonium production in the wet microalgae amendment, as indicated by an increase in nrfA gene and ammonium concentration. This is a significant finding because DNRA leads to N retention in agricultural soils instead of N loss via nitrification and denitrification. Thus, further processing the microalgae through drying or dewetting may not be favorable for fertilizer production as the wet microalgae appeared to promote DNRA and N retention.


Subject(s)
Ammonium Compounds , Microalgae , Nitrates/chemistry , Nitrogen/analysis , Soil/chemistry , Abattoirs , Carbon Dioxide/analysis , Denitrification
20.
Sci Total Environ ; 896: 165083, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37391135

ABSTRACT

In view of climate considerations regarding the management of peatlands, there is a need to assess whether rewetting can mitigate greenhouse gas (GHG) emissions, and notably how site-specific soil-geochemistry will influence differences in emission magnitudes. However, there are inconsistent results regarding the correlation of soil properties with heterotrophic respiration (Rh) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from bare peat. In this study, we determined 1) soil-, and site-specific geochemical components as drivers for emissions from Rh on five Danish fens and bogs, and 2) emission magnitudes under drained and rewetted conditions. For this, a mesocosm experiment was performed under equal exposure to climatic conditions and water table depths controlled to either -40 cm, or -5 cm. For the drained soils, we found that annual cumulative emissions, accounting for all three gases, were dominated by CO2, contributing with, on average, 99 % to a varying global warming potential (GWP) of 12.2-16.9 t CO2eq ha-1 yr-1. Rewetting lowered annual cumulative emissions from Rh by 3.2-5.1 t CO2eq ha-1 yr-1 for fens and bogs, respectively, despite a high variability of site-specific CH4 emissions, contributing with 0.3-3.4 t CO2 ha-1 yr-1 to the GWP. Overall, analyses using generalized additive models (GAM) showed that emission magnitudes were well explained by geochemical variables. Under drained conditions, significant soil-specific predictor variables for CO2 flux magnitudes were pH, phosphorus (P), and the soil substrate's relative water holding capacity (WHC). When rewetted, CO2 and CH4 emissions from Rh were affected by pH, WHC, as well as contents of P, total carbon and nitrogen. In conclusion, our results found the highest GHG reduction on fen peatlands, further highlighting that peat nutrient status and acidity, and the potential availability of alternative electron acceptors, might be used as proxies for prioritising peatland areas for GHG mitigation efforts by rewetting.

SELECTION OF CITATIONS
SEARCH DETAIL
...