Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
J Exp Bot ; 73(8): 2454-2468, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35106531

ABSTRACT

Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination. Changes in this limit were positively related to soil temperature during dormancy release and induction, and could be predicted using thermal time. From this, we developed a temperature-driven simulation to predict the fraction of the seed bank able to germinate in a realistic global warming scenario that approximated seedling emergence timing. Simulations predicted, in accordance with seedling emergence observed in the field, an increase in the fraction of the seed bank able to emerge as a result of global warming. In addition, our results suggest that buried seeds perceive changes in the variability of the mean daily soil temperature as the signal to change between dormancy release and induction according to the seasons.


Subject(s)
Arabidopsis , Arabidopsis/physiology , Germination/physiology , Global Warming , Plant Dormancy/physiology , Seasons , Seedlings/physiology , Seeds/physiology , Soil , Temperature
2.
Sci Total Environ ; 822: 153654, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35124058

ABSTRACT

Wildfires affect different physical, chemical, and hydraulic soil properties, and the magnitude of their effects varies depending on intrinsic soil properties and wildfire characteristics. As a result of climate change, the frequency and intensity of wildfires have increased, and understanding their impact and predicting the temperature to which soils were exposed in previous events is becoming increasingly critical. Hence, the objectives of this study were to develop a soil-heating laboratory procedure to (a) identify changes in soil properties at different temperatures and (b) to infer the temperature ranges to which heated soils have been exposed. Saturated (Ks) and unsaturated (Ku) hydraulic conductivity, pH, electrical conductivity (EC), wet aggregate stability (WAS), soil water repellency index (RIm), and soil organic matter content (SOM) were measured in six laboratory heated (LH) soils at 300, 500, 700, and 900 °C for 2 h. Bulk density (BD) and soil texture were measured in unheated (UH) and wildfire-unheated (WH) samples. UH samples were used as baselines to quantify changes in soil properties, and WH and LH samples were compared to determine the temperatures to which WH soils were exposed. The results show that in the studied temperature range, WAS exhibited a U-shaped trend, opposite to that of pH and EC. Ks and Ku (negative tension of -3 cm) tend to increase with temperature, reaching a maximum of 1.27·10-4 and 5.62·10-5 (m/s) at 900 °C, respectively. RIm was highly dependent on texture; loam soils had an average minimum and maximum of 1.84 and 2.73, at 900 and 300 °C, respectively, while sandy loam soils had an average minimum and maximum of 1.29 and 2.08 at 300 and 900 °C, respectively. Finally, the parameters that provided laboratory variation and a temperature range consistent with the results observed in naturally heated soils were WAS, RIm, pH, and EC.


Subject(s)
Soil , Wildfires , Hot Temperature , Soil/chemistry , Temperature
3.
J. Anim. Behav. Biometeorol. ; 09(01): 1-6, Jan. 2021. tab, graf
Article in English | VETINDEX | ID: vti-765634

ABSTRACT

Fiddler crabs live in an intertidal habitat and face several environmental constraints. Extreme environmental conditions, especially temperature affects their growth and reproduction. They use several strategies to deal with extreme temperatures. Among these, constructing burrows is important. Burrows act as a refuge during very high or low temperatures. This study investigates the temporal variations in air temperature, burrow temperature of large-sized male and female Austruca perplexa crabs, and the soil temperature near their burrows in Nakhon Si Thammarat province, southern Thailand (tropical climate). Air, burrow and soil temperatures were measured every 30 min in a day using temperature sensors. We observed that from 8:00 up to and including 17:30, burrow temperature was lower than soil temperature, but other times, burrow temperature was higher than soil temperature. In the case of air temperature, it was lower than soil or burrow temperatures most of the time in a day. When we compared temperatures among air, soil, and burrows at day (6:00 up to 17:30) and night (18:00 up to 5:30), burrow temperature was lower than soil temperature during the day but was higher at night. The air temperature was lower than soil or burrow temperatures on both day and night. This study shows that A. perplexa crab burrows can modulate the inside temperature and maintain a suitable temperature for the crabs.(AU)


Subject(s)
Animals , Male , Female , Brachyura , Temperature , Hot Temperature/adverse effects , Cold Temperature/adverse effects
4.
J. Anim. Behav. Biometeorol ; 9(1): 1-6, Jan. 2021. tab, graf
Article in English | VETINDEX | ID: biblio-1484339

ABSTRACT

Fiddler crabs live in an intertidal habitat and face several environmental constraints. Extreme environmental conditions, especially temperature affects their growth and reproduction. They use several strategies to deal with extreme temperatures. Among these, constructing burrows is important. Burrows act as a refuge during very high or low temperatures. This study investigates the temporal variations in air temperature, burrow temperature of large-sized male and female Austruca perplexa crabs, and the soil temperature near their burrows in Nakhon Si Thammarat province, southern Thailand (tropical climate). Air, burrow and soil temperatures were measured every 30 min in a day using temperature sensors. We observed that from 8:00 up to and including 17:30, burrow temperature was lower than soil temperature, but other times, burrow temperature was higher than soil temperature. In the case of air temperature, it was lower than soil or burrow temperatures most of the time in a day. When we compared temperatures among air, soil, and burrows at day (6:00 up to 17:30) and night (18:00 up to 5:30), burrow temperature was lower than soil temperature during the day but was higher at night. The air temperature was lower than soil or burrow temperatures on both day and night. This study shows that A. perplexa crab burrows can modulate the inside temperature and maintain a suitable temperature for the crabs.


Subject(s)
Male , Female , Animals , Brachyura , Temperature , Hot Temperature/adverse effects , Cold Temperature/adverse effects
5.
Sci. agric. ; 75(3): 216-224, mai.-jun. 2018. ilus, tab, graf
Article in English | VETINDEX | ID: vti-728735

ABSTRACT

The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soilmoisture > potential acidity.(AU)


Subject(s)
Data Mining , Carbon Dioxide/analysis , Soil Analysis , Organic Matter , Saccharum
6.
Sci. agric ; 75(3): 216-224, mai.-jun. 2018. ilus, tab, graf
Article in English | VETINDEX | ID: biblio-1497708

ABSTRACT

The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soilmoisture > potential acidity.


Subject(s)
Soil Analysis , Carbon Dioxide/analysis , Organic Matter , Data Mining , Saccharum
7.
Sci Total Environ ; 612: 1234-1248, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28892867

ABSTRACT

Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Zuz). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Zuz at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Zuz in the study zone, such a relationship cannot be applied to directly estimate ∆Zuz using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface.

8.
Plant Biol (Stuttg) ; 19(5): 818-823, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28646622

ABSTRACT

Dormancy cycles are an important mechanism for avoiding seed germination under unfavourable periods for seedling establishment. This mechanism has been scarcely studied in tropical species. Here, we studied three tropical and perennial species of Xyris, X. asperula, X. subsetigera and X. trachyphylla, to investigate in situ longevity and the existence of seasonal seed dormancy cycles. Seeds of three species of Xyris were buried in their natural habitat, with samples exhumed bimonthly for 18 months. Germination of exhumed seeds was assessed under a 12-h photoperiod over a broad range of temperatures. Seeds of X. trachyphylla were also subjected to treatments to overcome secondary dormancy. Seeds of all species are able to form a persistent seed bank and exhibit seasonal changes in germinability. Secondary dormancy was acquired during the rainy summer and was overcome during the subsequent dry season (autumn/winter). Desiccation partially overcomes secondary dormancy in X. trachyphylla seeds. Soil seed bank persistence and synchronisation of seed germination under favourable conditions for seedling establishment contribute to the persistence and regeneration of X. asperula, X. subsetigera and X. trachyphylla in their natural environment.


Subject(s)
Germination/physiology , Magnoliopsida/physiology , Plant Dormancy/physiology , Seedlings/physiology , Seeds/physiology , Soil , Temperature
9.
Acta amaz ; Acta amaz;46(1): 1-12, jan./mar. 2016. ilus, tab, graf
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1455289

ABSTRACT

The soil carbon dioxide (CO2) efflux dynamics and its controlling factors of Amazonian agroforestry systems are poorly understood. The objective of this study was to evaluate the temporal variation of soil CO2 efflux in oil palm-based agroforestry systems and the relation between efflux and biotic (microbial and total soil carbon, microbial respiration, fine roots, individual components of agroforestry systems (AFS)) and abiotic factors (soil moisture and temperature). The measurements were taken during the less rainy (December 2010) and rainy (May 2011) periods. The soil CO2 efflux was highest during the rainy season, probably due to increased microbial activity influenced by climatic factors coupled with biotic factors. The soil CO2 efflux correlated positively with soil moisture and microbial biomass carbon and negatively with soil temperature and metabolic quotient, but these correlations were weak. The soil CO2 efflux was sensitive to the type of agroforestry system and to rainfall seasonality.


A dinâmica do efluxo de dióxido de carbono (CO2) do solo e seus fatores controladores em sistemas agroflorestais da Amazônia são pouco compreendidas. O objetivo deste estudo foi avaliar a variação temporal do efluxo de CO2 do solo em sistemas agroflorestais onde a palma de óleo é a cultura principal e sua relação com fatores bióticos (carbono microbiano do solo, carbono total do solo, respiração microbiana do solo, raízes finas do solo, indivíduos componentes dos sistemas agroflorestais (SAFs) ) e abióticos (umidade e temperatura do solo). As medições foram realizadas nos períodos menos chuvoso (dezembro de 2010) e chuvoso (maio de 2011). O efluxo de CO2 do solo foi mais alto no período chuvoso, provavelmente, devido à maior atividade microbiana nesse período influenciada por fatores climáticos aliados a fatores bióticos. O efluxo de CO2do solo se correlacionou positivamente com umidade do solo e carbono da biomassa microbiana e negativamente com temperatura do solo e quociente metabólico, porém as correlações foram fracas. O efluxo de CO2do solo foi sensível ao tipo de sistema agroflorestal e a sazonalidade da precipitação.


Subject(s)
Soil Analysis , Crop Production , Carbon Dioxide/analysis , Greenhouse Effect , Biomass , Abiotic Factors , Biotic Factors
10.
Acta amaz. ; 46(1): 1-12, jan.-mar. 2016. ilus, tab, graf
Article in Portuguese | VETINDEX | ID: vti-16669

ABSTRACT

The soil carbon dioxide (CO2) efflux dynamics and its controlling factors of Amazonian agroforestry systems are poorly understood. The objective of this study was to evaluate the temporal variation of soil CO2 efflux in oil palm-based agroforestry systems and the relation between efflux and biotic (microbial and total soil carbon, microbial respiration, fine roots, individual components of agroforestry systems (AFS)) and abiotic factors (soil moisture and temperature). The measurements were taken during the less rainy (December 2010) and rainy (May 2011) periods. The soil CO2 efflux was highest during the rainy season, probably due to increased microbial activity influenced by climatic factors coupled with biotic factors. The soil CO2 efflux correlated positively with soil moisture and microbial biomass carbon and negatively with soil temperature and metabolic quotient, but these correlations were weak. The soil CO2 efflux was sensitive to the type of agroforestry system and to rainfall seasonality.(AU)


A dinâmica do efluxo de dióxido de carbono (CO2) do solo e seus fatores controladores em sistemas agroflorestais da Amazônia são pouco compreendidas. O objetivo deste estudo foi avaliar a variação temporal do efluxo de CO2 do solo em sistemas agroflorestais onde a palma de óleo é a cultura principal e sua relação com fatores bióticos (carbono microbiano do solo, carbono total do solo, respiração microbiana do solo, raízes finas do solo, indivíduos componentes dos sistemas agroflorestais (SAFs) ) e abióticos (umidade e temperatura do solo). As medições foram realizadas nos períodos menos chuvoso (dezembro de 2010) e chuvoso (maio de 2011). O efluxo de CO2 do solo foi mais alto no período chuvoso, provavelmente, devido à maior atividade microbiana nesse período influenciada por fatores climáticos aliados a fatores bióticos. O efluxo de CO2do solo se correlacionou positivamente com umidade do solo e carbono da biomassa microbiana e negativamente com temperatura do solo e quociente metabólico, porém as correlações foram fracas. O efluxo de CO2do solo foi sensível ao tipo de sistema agroflorestal e a sazonalidade da precipitação.(AU)


Subject(s)
Carbon Dioxide/analysis , Soil Analysis , 24444 , Greenhouse Effect , Biomass , Biotic Factors , Abiotic Factors
11.
Front Microbiol ; 6: 945, 2015.
Article in English | MEDLINE | ID: mdl-26441880

ABSTRACT

Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.

12.
Sci. agric ; 72(5): 452-458, Sept.-Oct. 2015. graf, tab
Article in English | VETINDEX | ID: biblio-1497510

ABSTRACT

Soil respiration is a major component of the global carbon cycle which links ecosystems and the atmosphere. To evaluate the reaction of soil respiration after wetting, during a dry period, soil respiration and associated environmental factors were measured over a 24-h period, during the dry season in North Cameroon after wetting the soil. Over 24-h, soil respiration rates followed a quadratic curve during the day coming close to linear at night, while soil temperature and moisture together explained at least 73 % of the variations during the 24-h observed. These soil respiration rates increased during the morning, peaked between 11h00 and 13h00 and then decreased gradually to the minimum around 06h00. These observations were used to propose a method for estimating mean daytime and nighttime soil respiration after wetting the soil. The method proposed in this study has the advantage of being based on a small number of measurements and is, therefore, easier to implement for monitoring 24-h soil respiration after the first rains following a long dry period.


Subject(s)
Soil Analysis , Cameroon , Dry Season , Soil Moisture
13.
Sci. agric. ; 72(5): 452-458, Sept.-Oct. 2015. graf, tab
Article in English | VETINDEX | ID: vti-27679

ABSTRACT

Soil respiration is a major component of the global carbon cycle which links ecosystems and the atmosphere. To evaluate the reaction of soil respiration after wetting, during a dry period, soil respiration and associated environmental factors were measured over a 24-h period, during the dry season in North Cameroon after wetting the soil. Over 24-h, soil respiration rates followed a quadratic curve during the day coming close to linear at night, while soil temperature and moisture together explained at least 73 % of the variations during the 24-h observed. These soil respiration rates increased during the morning, peaked between 11h00 and 13h00 and then decreased gradually to the minimum around 06h00. These observations were used to propose a method for estimating mean daytime and nighttime soil respiration after wetting the soil. The method proposed in this study has the advantage of being based on a small number of measurements and is, therefore, easier to implement for monitoring 24-h soil respiration after the first rains following a long dry period.(AU)


Subject(s)
Soil Moisture , Soil Analysis , Dry Season , Cameroon
14.
Acta amaz ; Acta amaz;42(2): 173-184, June 2012. ilus, tab
Article in English | LILACS | ID: lil-616878

ABSTRACT

Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20 percent for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34 percent for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90 percent explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.


Respiração do solo possui um importante papel no ciclo do carbono em florestas tropicais Amazônicas. Entretanto poucas medidas de respiração do solo foram feitas. Neste estudo são apontados os efeitos na metodologia de instalação dos anéis no solo, bem como os efeitos da precipitação e a distribuição espacial da emissão de CO2 na Amazônia central. Os efeitos da inserção de anéis no solo aumentaram de 13 a 20 por cento para o solo arenoso e argiloso, o efeito durou de 4 a 7 horas, respectivamente. Já os efeitos na precipitação, notamos que os eventos abaixo de 2 mm a respiração do solo permaneceu indiferente, mas para precipitação acima de 3 mm, 2 horas depois, houve uma diminuição da temperatura e respiração em 10 a 34 por cento para o solo argilosos e arenosos, retornando a emissão normal após 15 a 18 horas. Para estimar a distribuição espacial da respiração do solo e o tamanho correto das áreas medidas, foram utilizadas as imagens do Shuttle Radar Topographic Mission (SRTM). Considerando que a Reserva de Campina é um mosaico de solo desnudo, floresta alagável de baixa e alta estatura (SHF e THF). A emissão total média de CO2 para a área foi de 3.08±0.8 µmol CO2 m-2 s-1. Já a Reserva do Cuieiras possui outro mosaico de florestas de platôs, encostas, Campinaranas e riparias, sendo a emissão média total desta área foram de 3.82±0.76 µmol CO2 m-2 s-1. Encontramos também que a respiração do solo foi controlada pela temperatura do solo, sendo uma correlação de 90 por cento encontrada pela análise de regressão. Dados obtidos com sistema automático de respiração do solo é uma grande oportunidade de melhoramento da técnica e o aumento da confiança nas medidas em relação aos possíveis fatores que controlam os processos de emissão de CO2 do solo.


Subject(s)
Soil , Temperature , Atmospheric Precipitation
15.
Acta amaz. ; 42(2): 173-184, 2012. ilus, tab
Article in English | VETINDEX | ID: vti-1988

ABSTRACT

Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20 percent for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34 percent for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90 percent explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.(AU)


Respiração do solo possui um importante papel no ciclo do carbono em florestas tropicais Amazônicas. Entretanto poucas medidas de respiração do solo foram feitas. Neste estudo são apontados os efeitos na metodologia de instalação dos anéis no solo, bem como os efeitos da precipitação e a distribuição espacial da emissão de CO2 na Amazônia central. Os efeitos da inserção de anéis no solo aumentaram de 13 a 20 por cento para o solo arenoso e argiloso, o efeito durou de 4 a 7 horas, respectivamente. Já os efeitos na precipitação, notamos que os eventos abaixo de 2 mm a respiração do solo permaneceu indiferente, mas para precipitação acima de 3 mm, 2 horas depois, houve uma diminuição da temperatura e respiração em 10 a 34 por cento para o solo argilosos e arenosos, retornando a emissão normal após 15 a 18 horas. Para estimar a distribuição espacial da respiração do solo e o tamanho correto das áreas medidas, foram utilizadas as imagens do Shuttle Radar Topographic Mission (SRTM). Considerando que a Reserva de Campina é um mosaico de solo desnudo, floresta alagável de baixa e alta estatura (SHF e THF). A emissão total média de CO2 para a área foi de 3.08±0.8 µmol CO2 m-2 s-1. Já a Reserva do Cuieiras possui outro mosaico de florestas de platôs, encostas, Campinaranas e riparias, sendo a emissão média total desta área foram de 3.82±0.76 µmol CO2 m-2 s-1. Encontramos também que a respiração do solo foi controlada pela temperatura do solo, sendo uma correlação de 90 por cento encontrada pela análise de regressão. Dados obtidos com sistema automático de respiração do solo é uma grande oportunidade de melhoramento da técnica e o aumento da confiança nas medidas em relação aos possíveis fatores que controlam os processos de emissão de CO2 do solo.(AU)


Subject(s)
Carbon Monoxide/chemistry , Soil/analysis , Amazonian Ecosystem/analysis
16.
Acta amaz ; Acta amaz;39(4)2009.
Article in Portuguese | LILACS-Express | LILACS, VETINDEX | ID: biblio-1455037

ABSTRACT

The objective of this paper was (a) to estimate the CO2 soil efflux in a Mature Transitional Tropical Forest Amazonia and a area of Pasture in the north of the Mato Grosso; (b) to analyzer the influence of the soil humidity and temperature, and accumulated litter. The measurements had been carried through with device of CO2 absorption for infra-red ray (EGM/WMA-2 PP System, Hitchin Hertz, UK) in may/2005 to april/2006. The average values of the CO2 efflux of the ground in the Forest and the area of 5,45 and 4,94 µmolm-2s-1 Pasture µmolm-2s-1, respectively. In the dry season the behavior of the CO2 efflux of the ground was similar in the Mature Transitional Tropical Forest Amazonian and in the area of Pasture, and in the wet season the ecosystems had presented distinct behaviors, and the CO2 efflux of the ground in the area of Pasture was superior to the one in the Transitional Forest. It is essential that if it evaluates the influence of other factors in the CO2 efflux in ecosystems located in one same ecótono for the attainment of new answers that contribution to clarify doubt atmospheric CO2 emission to them the worldwide level.


O objetivo deste trabalho foi (a) estimar o efluxo de CO2 do solo em uma Floresta de Transição Amazônica Cerrado e em uma área de Pastagem localizadas no norte do Mato Grosso, e (b) verificar a influência da umidade e temperatura do solo, e serrapilheira acumulada no efluxo de CO2. As medições foram realizadas com aparelho de absorção de CO2 por infravermelho (EGM/WMA-2 PP System, Hitchin Hertz, UK) de maio/2005 a abril/2006. Os valores médios do efluxo de CO2 do solo na Floresta e na área de Pastagem foram de 5,45 e 4,95 µmolm-2s-1, respectivamente. Uma resposta satisfatória do efluxo de CO2 do solo e a serrapilheira acumulada, ocorreu somente na estação seca. Na estação seca o comportamento do efluxo de CO2 do solo foi semelhante na Floresta de Transição Amazônica Cerrado e na área de Pastagem, e na estação úmida os ecossistemas apresentaram comportamentos distintos, e o efluxo de CO2 do solo na área de Pastagem foi superior ao na Floresta de Transição. É essencial que se avalie a influência de outros fatores no efluxo de CO2 em ecossistemas localizados em um mesmo ecótono para a obtenção de novas respostas que contribuíam para esclarecer as dúvidas da emissão de CO2 em nível mundial.

17.
Acta amaz. ; 39(4)2009.
Article in Portuguese | VETINDEX | ID: vti-450516

ABSTRACT

The objective of this paper was (a) to estimate the CO2 soil efflux in a Mature Transitional Tropical Forest Amazonia and a area of Pasture in the north of the Mato Grosso; (b) to analyzer the influence of the soil humidity and temperature, and accumulated litter. The measurements had been carried through with device of CO2 absorption for infra-red ray (EGM/WMA-2 PP System, Hitchin Hertz, UK) in may/2005 to april/2006. The average values of the CO2 efflux of the ground in the Forest and the area of 5,45 and 4,94 µmolm-2s-1 Pasture µmolm-2s-1, respectively. In the dry season the behavior of the CO2 efflux of the ground was similar in the Mature Transitional Tropical Forest Amazonian and in the area of Pasture, and in the wet season the ecosystems had presented distinct behaviors, and the CO2 efflux of the ground in the area of Pasture was superior to the one in the Transitional Forest. It is essential that if it evaluates the influence of other factors in the CO2 efflux in ecosystems located in one same ecótono for the attainment of new answers that contribution to clarify doubt atmospheric CO2 emission to them the worldwide level.


O objetivo deste trabalho foi (a) estimar o efluxo de CO2 do solo em uma Floresta de Transição Amazônica Cerrado e em uma área de Pastagem localizadas no norte do Mato Grosso, e (b) verificar a influência da umidade e temperatura do solo, e serrapilheira acumulada no efluxo de CO2. As medições foram realizadas com aparelho de absorção de CO2 por infravermelho (EGM/WMA-2 PP System, Hitchin Hertz, UK) de maio/2005 a abril/2006. Os valores médios do efluxo de CO2 do solo na Floresta e na área de Pastagem foram de 5,45 e 4,95 µmolm-2s-1, respectivamente. Uma resposta satisfatória do efluxo de CO2 do solo e a serrapilheira acumulada, ocorreu somente na estação seca. Na estação seca o comportamento do efluxo de CO2 do solo foi semelhante na Floresta de Transição Amazônica Cerrado e na área de Pastagem, e na estação úmida os ecossistemas apresentaram comportamentos distintos, e o efluxo de CO2 do solo na área de Pastagem foi superior ao na Floresta de Transição. É essencial que se avalie a influência de outros fatores no efluxo de CO2 em ecossistemas localizados em um mesmo ecótono para a obtenção de novas respostas que contribuíam para esclarecer as dúvidas da emissão de CO2 em nível mundial.

18.
Ciênc. agrotec., (Impr.) ; 32(3): 929-937, maio-jun. 2008. tab
Article in Portuguese | LILACS | ID: lil-487966

ABSTRACT

As rodas compactadoras das semadoras-adubadoras têm como principal função, propiciar o bom contato entre o solo e a semente para garantir a germinação das sementes e a emergência das plântulas. Objetivou-se, neste trabalho, estudar a influência de três modelos de rodas compactadoras, três profundidades de semeadura e três níveis de carga sobre a roda compactadora sob a temperatura e o teor de água do solo. O trabalho foi desenvolvido na pista de ensaios de semeadura, localiza em Uberaba, MG, em Latossolo Vermelho distrófico, utilizando-se o delineamento experimental de parcelas sub-subdivididas, com 27 tratamentos e quatro repetições. As rodas com maior área de contato com o solo proporcionaram maiores valores do teor médio de água e da temperatura do solo. O nível de carga sobre a roda compactadora não afetou a temperatura e o teor de água do solo.


Press wheels were designed to improve soil-seed contact, thus promoting good seed germination and emergence of plantules. The present investigation was aimed at studying the influence of three models of press wheel, three sowing depths and three load levels on soil temperature and moisture contents. The experiment was carried out in Uberaba, State of Minas Gerais, Brazil, in split-plot desing, 27 treatments and four repetitions. Results have shown that press wheels with bigger soil contact area provide the highest values of average soil moisture an temperature. However, load level on the press has shown no effect on soil temperature and moisture contents.

19.
Acta amaz ; Acta amaz;32(3)2002.
Article in Portuguese | LILACS-Express | LILACS, VETINDEX | ID: biblio-1454900

ABSTRACT

Soil physical variables were investigated in forest plots submitted to selective logging in Central Amazonia. After logging, soil samples were collected to obtain soil water retention curves and measure: available soil water to the plants, soil density, and total porosity. Temperature measurements were carried out for 13 months, considering six treatments: control, center of the gaps, edge of the gaps, edge of the remaining forest, remaining forest and tractor tracks. Hydraulic conductivity measurements on saturated soil were conducted both on the control forest as well as on the logged plots, with no treatment distinction. The soil showed a low available water storage capacity: only 11 to 18% can be available to the plants, up to 1 meter depth. The temperature of the soil upper layers was influenced by logging, i. e., through the opening of the gaps, light reaches the soil more intensely in the center and edge of gaps, increasing temperatures in relation to the control and the remaining forest.


Variáveis físicas do solo foram investigadas em parcelas de floresta de terra firme submetidas à extração seletiva de madeira na Amazônia central. Foram obtidas curvas de retenção de água no solo, juntamente com medidas de água disponível no solo às plantas, densidade do solo e porosidade total. Medidas de temperatura do solo foram realizadas por mais de 13 meses, considerando seis tratamentos: controle, centro da clareira, borda da clareira, borda da floresta remanescente, floresta remanescente e trilha do trator. Medidas de condutividade hidráulica de solo saturado foram feitas na floresta e em clareiras, sem distinguir os tratamentos. O solo revelou baixa capacidade de armazenar água disponível: apenas 11 a 18% da água pode estar disponível às plantas, num perfil de 1 m de profundidade. A temperatura das camadas superiores do solo foi influenciada pela extração seletiva de madeira: nas clareiras abertas, a luz chega com mais intensidade no solo, proporcionando temperaturas mais elevadas no centro e nas bordas das clareiras do que no controle e na floresta remanescente.

20.
Acta amaz. ; 32(3)2002.
Article in Portuguese | VETINDEX | ID: vti-449934

ABSTRACT

Soil physical variables were investigated in forest plots submitted to selective logging in Central Amazonia. After logging, soil samples were collected to obtain soil water retention curves and measure: available soil water to the plants, soil density, and total porosity. Temperature measurements were carried out for 13 months, considering six treatments: control, center of the gaps, edge of the gaps, edge of the remaining forest, remaining forest and tractor tracks. Hydraulic conductivity measurements on saturated soil were conducted both on the control forest as well as on the logged plots, with no treatment distinction. The soil showed a low available water storage capacity: only 11 to 18% can be available to the plants, up to 1 meter depth. The temperature of the soil upper layers was influenced by logging, i. e., through the opening of the gaps, light reaches the soil more intensely in the center and edge of gaps, increasing temperatures in relation to the control and the remaining forest.


Variáveis físicas do solo foram investigadas em parcelas de floresta de terra firme submetidas à extração seletiva de madeira na Amazônia central. Foram obtidas curvas de retenção de água no solo, juntamente com medidas de água disponível no solo às plantas, densidade do solo e porosidade total. Medidas de temperatura do solo foram realizadas por mais de 13 meses, considerando seis tratamentos: controle, centro da clareira, borda da clareira, borda da floresta remanescente, floresta remanescente e trilha do trator. Medidas de condutividade hidráulica de solo saturado foram feitas na floresta e em clareiras, sem distinguir os tratamentos. O solo revelou baixa capacidade de armazenar água disponível: apenas 11 a 18% da água pode estar disponível às plantas, num perfil de 1 m de profundidade. A temperatura das camadas superiores do solo foi influenciada pela extração seletiva de madeira: nas clareiras abertas, a luz chega com mais intensidade no solo, proporcionando temperaturas mais elevadas no centro e nas bordas das clareiras do que no controle e na floresta remanescente.

SELECTION OF CITATIONS
SEARCH DETAIL