Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Foods ; 13(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39272593

ABSTRACT

Almond okara, a by-product of almond milk production, is rich in bioactive components, such as polyphenols, lipids, and alpha-tocopherol, making it a valuable functional food ingredient. This work aimed to investigate its composition while exploring two main aspects: (i) the impact of extraction time, solid-to-solvent ratio, ethanol concentration, and temperature on polyphenol recovery, and (ii) the quantification of okara's triglycerides (TG) and alpha-tocopherol contents. The polyphenols' optimal extraction conditions were 90 min, a 1:30 solid-to-solvent ratio (w/v), 50% ethanol, and 60 °C. These conditions achieved a total polyphenol yield of 523 mg GAE, tannin yield of 340 mg GAE, total flavonoid yield of 548 mg CE, and a total antioxidant capacity of 779 mg AAE per 100 g dry okara. The Peleg model effectively described the extraction kinetics. Additionally, TG levels, quantified by UHE/LPSFC-APCI-MS, in okara were comparable to those in almonds, and alpha-tocopherol levels, quantified by LC-UV, were 14,400 µg/100 g in almonds and 15,600 µg/100 g in okara. These findings highlight the potential of okara as a valuable resource, with a straightforward, scalable, and cost-effective solid-liquid extraction (SLE) method for polyphenols and a supercritical fluid extraction method for TG, for use in the functional food, nutraceutical, and cosmetic industries.

2.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893321

ABSTRACT

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42- electrostatics and the ion-dipole interaction of the lithium-receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

3.
Food Chem ; 451: 139416, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663249

ABSTRACT

A reliable solid-liquid extraction protocol coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry in the negative-ion mode was developed and validated for illegal bromate determination in preliminary and bakery products. Crude and dried-treated samples were directly extracted with acetonitrile-water (4:1, v/v). Bromate was determined using a Phenomenex Synergi™ Polar reversed-phase column and MS/MS under multiple reaction monitoring. The chosen solvent efficiently extracted bromate with all applied extraction-assisting techniques (p > 0.05). Although this assay avoids cleanup procedures, matrix effect of <-11% was achieved. Rapid bromate separation in only 8 min was attained by a reversed-phase column. In both commodities, linearity range, R2, recovery%, repeatability, intermediate precision, LOD and LOQ results were 0.05-100 ng mL-1, >0.9999, 88.6-103%, 2.93-9.80% and 9.64-10.10%, 0.015 µg kg-1 and 0.05 µg kg-1, respectively. Out of 288 tested real samples, 13.9% of violations were observed. This high-sensitivity protocol offers effective oversight and consumer protection.


Subject(s)
Bromates , Food Contamination , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Food Contamination/analysis , Bromates/analysis , Bromates/chemistry , Food Additives/analysis , Food Additives/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Bread/analysis , Limit of Detection
4.
Article in English | MEDLINE | ID: mdl-38520897

ABSTRACT

Extraction of vitamin D, including its hydroxylated and esterified metabolites, from soft tissues such as the liver is challenging due to the lipophilic character of matrix and analytes that are expected in very low concentration levels. In this study, we aimed at the optimization of two-step extraction using solid-liquid extraction as the first step, followed by solid-phase extraction. Various solvents, including ethanol, acetonitrile, methanol, acetone, heptane, and heptane with isopropanol, were investigated to isolate vitamin D compounds from liver tissue in the first step. Acetone was finally selected as the most suitable solvent for the solid-liquid extraction, with the highest recovery in the range of 67 - 98% for polar hydroxylated forms and 3 - 28% for lipophilic vitamin D and esters. Two solid phase extraction (SPE) based on the (i) "bind and elute strategy" and (ii) "removal strategy" using hydrophilic-lipophilic balanced SPE sorbent were optimized as a proceeding step for acetone extracts to increase the method selectivity. Finally, two optimized methods, combining solid-liquid extraction and individual SPE strategy, were examined in terms of sensitivity, recovery, matrix effect, accuracy, and precision. The limits of quantification were in the range of 1 - 10 ng/mL and 3 - 20 ng/mL analyzed by ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography hyphenated a with tandem mass spectrometer, respectively. The absolute recovery determined for the "bind and elute strategy" protocol was in the range of 3 - 24 %. Nevertheless, this method was free of matrix effects, which were determined to be in the 73 - 120 % range. On the contrary, the "removal strategy" approach provided higher recovery values for all compounds (47 - 123 %), but the results for nonpolar vitamin D and esters were strongly affected by signal suppression (matrix effects 3 - 51 %). Both methods fulfilled the criteria for accuracy and precision requested by the European Medicine Agency Guideline on Bioanalysis. "Removal strategy" SPE with decreased manual intervention and lower solvent consumption was finally applied to mouse liver tissue to determine vitamin D and its hydroxylated and esterified metabolites for the first time. The results, i.e., vitamin D esters detected in liver tissue, supported the notion that esters of vitamin D can be stored in lipophilic tissues to release vitamin D.


Subject(s)
Tandem Mass Spectrometry , Vitamin D , Animals , Mice , Tandem Mass Spectrometry/methods , Acetone , Chromatography, High Pressure Liquid/methods , Solvents , Vitamins , Liver , Heptanes , Solid Phase Extraction/methods
5.
Plant Foods Hum Nutr ; 79(1): 242-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329612

ABSTRACT

This work employed supramolecular solvents (SUPRAS) made up of octanoic acid, ethanol, and acidified water (pH ~ 3) to extract and concentrate bioactive compounds from Eugenia pyriformis Cambess (uvaia) pulp. At first, the SUPRAS phase characterization demonstrated the spherical aggregates' formation with an internal hydrophobic structure and an external hydrophilic media. Subsequently, the simultaneous production and extraction (SUPRAS-SPE) method was employed in the solid-liquid extraction (SLE) of uvaia pulp. The extracts were evaluated through Folin-Ciocalteu reducing capacity, antioxidant activity (DPPH assay), total carotenoid content (TCC), and total flavonoid content (TFC). The results showed that reducing the ethanol concentration in the SUPRAS composition boosted the TCC extraction while increasing the ethanol presence, promoting a high TFC yield. Moreover, the SUPRAS-SPE method was compared with the ex situ method (SUPRAS-ES), where the solvent was previously produced and then applied to the SLE. Both methods were evaluated concerning their EE% and thermal degradation. The SUPRAS-SPE method increased the EE% of uvaia pulp bioactive compounds compared to the SUPRAS-SE method, providing a suitable microenvironment to extract, concentrate, and stabilize carotenoids from uvaia pulp, offering a sustainable alternative to obtain valuable compounds.


Subject(s)
Eugenia , Solvents/chemistry , Eugenia/chemistry , Antioxidants/chemistry , Carotenoids , Ethanol
6.
Chemosphere ; 351: 141200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228192

ABSTRACT

Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 µg/g, while most EOF values were lower (

Subject(s)
Fluorocarbon Polymers , Fluorocarbons , Fluorocarbon Polymers/analysis , Fluorocarbons/analysis , Chromatography, Liquid , Fluorine/chemistry , Tandem Mass Spectrometry , Hydrogen-Ion Concentration
7.
Anal Chim Acta ; 1278: 341659, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709424

ABSTRACT

BACKGROUND: The kynurenine pathway (KP) generates eight tryptophan (TRP) metabolites collectively called kynurenines, which have gained enormous interest in clinical research. The importance of KP for different disease states calls for developing a low-cost and high-throughput chromatography-mass spectrometry method to evaluate the potential of different kynurenines. Simultaneous separation of TRP and its eight metabolites is challenging because they have substantial polarity differences (log P = -2.5 to +1.3). RESULTS: A low-cost, reversed-phase LC-MS/MS method based on polarity partitioning was established to simultaneously separate and quantitate all nine kynurenine pathway metabolites (KPMs) in a single run for the first time in the open literature. Based on stationary phase screening and ternary mobile phase optimization strategy, high polarity KPMs were retained while medium and low polarity KPMs were eluted in a shorter time. After method validation, we demonstrated the applicability of this LC/MS/MS method by quantitative measurement of all nine KPM in cerebrospinal fluid (CSF) and plasma among two groups of human subjects diagnosed with depression. Furthermore, we measured the differential KPMs in these two groups of low and high inflammation and correlated the results with CRP or TNF-α markers for depression. SIGNIFICANCE: Our proposed LC-MS/MS provides a new metabolite assay that can be easily applied in various clinical applications to simultaneously quantify multiple biomarkers in KP dysfunction.


Subject(s)
Chromatography, Reverse-Phase , Kynurenine , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Inflammation/diagnosis
8.
Front Nutr ; 10: 1231049, 2023.
Article in English | MEDLINE | ID: mdl-37720375

ABSTRACT

This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.

9.
Plants (Basel) ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631112

ABSTRACT

The term "officinal" derives from the Latin and includes all medicinal, aromatic and perfume plant species, which have long been a subject of interest for multiple purposes: health, food, pharmacological, cosmetic and so on. In this work, a study on six different species of medicinal plants, particularly characterized by digestive, choleretic and diuretic properties, was carried out: rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), gentian (Gentiana lutea), dandelion (Taraxacum officinale) and rhubarb (Rheum palmatum). The roots and aerial parts of plants were separately extracted with two different techniques-maceration and rapid solid-liquid dynamic extraction (RSLDE)-and the quali/quantitative analysis of active ingredients have been determined by applying dry residue, Folin-Ciocalteu and DPPH assays. Data obtained have provided useful answers regarding the efficiency of the extraction carried out on a mixture or on single plants, allowing us to evaluate the best choice according to the cases and the final uses.

10.
Foods ; 12(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569155

ABSTRACT

Ethanol (Et) has been suggested as a substitute for hexane (Hx) for use in the extraction of oils from different oleaginous matrices. In this study, Et and Hx were used to extract the residual oil present in a peanut press cake (PPC). Certain variables, such as temperature, solid/solvent ratio and the number of contact stages, in the sequential cross-current extraction process were evaluated; additionally, the effects of these variables on oils (POEt and POHx) and defatted solids (DSEt and DSHx) were explored. Hx exhibited an extraction yield of 86 ± 2% in two stages at 55 °C and a solid/solvent mass ratio of 1/4. Compared with Hx extraction, to achieve an Et extraction yield of 87 ± 4%, it was necessary to use a higher temperature (75 °C), a greater amount of solvent (solid/solvent ratio of 1/5) and a greater number of contact stages (3). POEt and POHx presented compositions in terms of fatty acids and triacylglycerols and physical properties similar to that of cold-pressed peanut oil (CPPO). POEt showed a more intense green/yellow hue and higher free acidity (1.47 ± 0.03%) than POHx and CPPO (0.82 ± 0.04 and 0.43 ± 0.02 free acidity mass %, respectively), indicating that the deacidification and bleaching steps in refining should be encumbered. DSEt and DSHx exhibited high protein contents (>45% by mass) and nitrogen solubilities (86 ± 6 and 98 ± 1%, respectively), indicating that they could be used to obtain proteins.

11.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446599

ABSTRACT

Seaweeds have gained considerable attention in recent years due to their potential health benefits and high contents of bioactive compounds. This review focuses on the exploration of seaweed's health-promoting properties, with particular emphasis on phlorotannins, a class of bioactive compounds known for their antioxidant and antidiabetic properties. Various novel and ecofriendly extraction methods, including solid-liquid extraction, ultrasound-assisted extraction, and microwave-assisted extraction are examined for their effectiveness in isolating phlorotannins. The chemical structure and isolation of phlorotannins are discussed, along with methods for their characterization, such as spectrophotometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and chromatography. Special attention is given to the antioxidant activity of phlorotannins. The inhibitory capacities of polyphenols, specifically phlorotannins from Ascophyllum nodosum against digestive enzymes, such as α-amylase and α-glucosidase, are explored. The results suggest that polyphenols from Ascophyllum nodosum seaweed hold significant potential as enzyme inhibitors, although the inhibitory activity may vary depending on the extraction conditions and the specific enzyme involved. In conclusion, seaweed exhibits great potential as a functional food ingredient for promoting health and preventing chronic diseases. Overall, this review aims to condense a comprehensive collection of high-yield, low-cost, and ecofriendly extraction methods for obtaining phlorotannins with remarkable antioxidant and antidiabetic capacities.


Subject(s)
Ascophyllum , Seaweed , Antioxidants/chemistry , Seaweed/chemistry , Ascophyllum/chemistry , Hypoglycemic Agents/pharmacology , Polyphenols/pharmacology , Polyphenols/chemistry , Vegetables
12.
J Chromatogr A ; 1705: 464139, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37352692

ABSTRACT

Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoid and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoid among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness.


Subject(s)
Flavonoids , Salix , Flavonoids/analysis , Solvents/chemistry , Chromatography, Liquid , Salix/chemistry , Salicylic Acid/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid
13.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985687

ABSTRACT

The optimization of extraction by using solvents of phenolic compounds (TPh) of grape pomace (GP) based on a central composite design was investigated. The GP was characterized, and preliminary assays were conducted with five different solvents (water, ethanol, acetone, methanol, and butanol) and the aqueous mixtures thereof. Ethanol and acetone were revealed to be the best solvents for TPh extraction. The main extraction parameters (temperature-T, time-t, solvent concentration, and liquid-solid ratio-L/S) were optimized by using a central composite design. The optimized conditions for the ethanol extraction (T = 60 °C, t = 1.5 h, L/S = 25 mL/gdryGP) and for acetone (T = 50 °C, t = 1.5 h, L/S = 25 mL/gdryGP) were determined. Single-stage extraction revealed a TPh of 45.18 ± 9.51 mgGAE/gdryGP for acetone and a TPh of 38.70 ± 3.64 mgGAE/gdryGP for ethanol. The characterization of the extracts revealed the presence of gallic acid, caffeic acid, syringic acid, vanillic acid, chlorogenic acid, and p-coumaric acid, where the concentration of the first three compounds stands out in all extracts. A three-stage extraction increased the yield of ethanol to 63.3 mg GAE/gdryGP and the yield of acetone to 59.2 mg GAE/gdryGP. Overall, both solvents allow the extraction of phenolic compounds of grape pomace, but ethanol is commonly considered a greener solvent for this purpose.

14.
Molecules ; 28(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770819

ABSTRACT

The evaluation of sustainable solvents as alternatives to more harmful conventional solvents combined with intensification techniques to recover phenolic compounds from agri-food waste is in the spotlight. The wine industry generates large amounts of waste as a consequence of grape processing operations, which can be revalued by solvent extraction of valuable antioxidants for food and fine chemical applications. Therefore, the present study focuses on the use of natural eutectic solvents (NAESs) with benign environmental, health, and safety profiles, for valorization of grape waste in the context of a circular economy. Herein, up to 15 NAESs consisting of combinations of three hydrogen bond acceptors (choline chloride, L-proline, and betaine) and four hydrogen bond donors (1,2-propanediol, glycerol, and 1,2- and 1,3-butanediol) were evaluated for antioxidant recovery. After an initial screening of the performance of NAESs by conventional extraction, the process was intensified by microwave-assisted extraction (MAE). The extracts were analyzed by UV/VIS spectrophotometric and HPLC methods. Promising results were obtained with the solvent betaine, 1,2-butanediol [1:4], using MAE at 100 °C for 3 min. Overall, the proposed NAESs-based MAE method was successfully applied to recover target compounds from grape waste, with great prospects for the antioxidants market and sustainable development for the winery sector.

15.
Foods ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673474

ABSTRACT

Rice bran is a rather underutilized by-product of the rice industry that nowadays is far from being valorized. In this study, the lipidomic profile of bran of the Italian rice variety, Roma, has been evaluated through ultra performance liquid chromatography-tandem mass spectrometry. Crude lipid extracts were obtained from rice bran treated with different green solvents (1-butanol, ethanol and methyl tert-butyl ether/methanol mixture) in combination with an ultrasonic pre-treatment, and then compared with extracts obtained with standard solvents (chloroform/methanol mixture). Lipid yield, number and type of lipids and composition of prevalent lipid classes extracted were evaluated in order to provide an exhaustive lipid profile of the rice bran and to identify the most efficient green solvent for solid-liquid extractions. Twelve different lipid classes and a maximum of 276 lipids were identified. Ethanol and methyl tert-butyl ether/methanol solvents provided higher lipid extraction yields, the former being the most effective solvent for the extraction of triglycerides and N-acylethanolamines and the latter the most effective for the extraction of diglycerides, phospholipids and ceramides at 4 °C. Moreover, extraction with ethanol at 20 °C gave similar results as at 4 °C in terms of lipid yield and for most of the classes of lipids extracted. Taken together, our results indicate ethanol and methyl tert-butyl ether/methanol as excellent solvents for lipid extraction from rice bran, with the aim to further valorize this food by-product in the perspective of a circular economy.

16.
Plants (Basel) ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679022

ABSTRACT

Stinging nettle (Urtica dioica L.) is an herbaceous plant that grows all over the world and is widely used as an edible and medicinal plant. Overall research results reveal that the chemical content and antioxidant activity of aerial parts and roots of stinging nettle depends on the growing region, soil, meteorological conditions (especially sunshine), collecting time, etc. The chemical composition of stinging nettle growing in Lithuania and the solid-liquid extraction efficiency of leaves and roots using different solvents were analysed. Additionally, we determined leaves phenols extraction efficiency using 96% methanol at different extraction conditions. Research results showed that a higher amount of crude fats, non-nitrogen extractives, and total carotenoids were in leaves, but the amount of crude proteins and ash did not differ significantly compared with roots. A higher amount of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) were detected in roots instead of leaves while saturated fatty acids (SFAs) were in leaves. The extraction results showed that the most effective solvent for total phenols and flavonoids in leaves was 96% methanol, for total phenols in roots was 50% methanol and 50% ethanol for total flavonoids in roots. The most effective temperature for the Urtica dioica L. leaves phenols extraction was 70 °C, while time does not have a significant influence. The present study's findings suggested that concentrated and binary solvents had different effects on the phenol's extraction efficiency from different stinging nettle parts and extraction temperature performed a key role instead of extraction time.

17.
Electrophoresis ; 44(5-6): 529-539, 2023 03.
Article in English | MEDLINE | ID: mdl-36718859

ABSTRACT

Tryptophan (TRP) is an essential amino acid catabolized mainly through the kynurenine pathway, and part of it is catabolized in the brain. The abnormal depletion of TRP and production of kynurenine (KYN) by two enzymes, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), have been linked to various neurological diseases. The ratio of TRP/KYN in plasma is a valuable measure for IDO/TDO activity and the prognosis of disease conditions. The 4-vinylphenylboronic acid (4-VPBA) was evaluated as a novel stationary phase for OT-CEC-MS/MS. TRP, KYN, and 3-hydroxykynurenine were separated using optimum conditions of 15 mM (NH4 )2 CO3 at pH 8 as a background electrolyte and 25 kV separation voltage on a 90 cm column. The usefulness of the 4-VPBA column for simple, fast, repeatable, and sensitive CEC-ESI-MS/MS application was demonstrated for the quantitation of TRP and KYN in the plasma of healthy human subjects and neuroinflammation subjects. The plasma sample was extracted on a zirconia-based ion-exchange cartridge for simultaneous protein precipitation and phospholipid removal. The method of standard addition, in combination with the internal standards approach, was used to prepare the calibration curve to overcome matrix matching and eliminate procedural errors. The developed quantitation method was validated according to FDA guidelines for sensitivity, accuracy, precision, and extraction recovery. The measured plasma level of TRP and KYN in healthy humans is aligned with the human metabolome database for the same two metabolites.


Subject(s)
Capillary Electrochromatography , Tryptophan , Humans , Tryptophan/chemistry , Kynurenine , Tandem Mass Spectrometry/methods
18.
Angew Chem Int Ed Engl ; 62(5): e202214785, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36440816

ABSTRACT

The first examples of halogen bonding (XB) heteroditopic homo[2]catenanes were prepared by discrete Na+ template-directed assembly of oligo(ethylene glycol) units derived from XB donor-containing macrocycles and acyclic bis-azide precursors, followed by a CuI -mediated azide-alkyne cycloaddition macrocyclisation reaction. Extensive 1 H NMR spectroscopic studies show the [2]catenane hosts exhibit positive cooperative ion-pair recognition behaviour, wherein XB-mediated halide recognition is enhanced by alkali metal cation pre-complexation. Notably, subtle changes in the catenanes' oligo(ethylene glycol) chain length dramatically alters their ion-binding affinity, stoichiometry, complexation mode, and conformational dynamics. Solution-phase and single-crystal X-ray diffraction studies provide evidence for competing host-separated and direct-contact ion-pair binding modes. We further demonstrate the [2]catenanes are capable of extracting solid alkali-metal halide salts into organic media.

19.
Food Chem ; 402: 134301, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137381

ABSTRACT

In this study, CO2-triggered switchable hydrophilicity solvents (SHSs) based on different amines and water were employed in the ultrasonic-assisted extraction of Polygonatum sibiricum polysaccharides (PSPs). When CO2 was pumped into the amine, the solution became hydrophilic and could be used as an extractant for PSPs extraction. When CO2 was removed, the solution switched hydrophobicity, with the extractants being separated from the extract and further recycled and reused. The factors affecting the solid-liquid extraction of PSPs were studied. The maximum extraction yield of 399.2 mg/g was obtained at a solid-liquid ratio of 1:20, extraction time of 60 min, extraction temperature of 50 °C, and ultrasonic power of 500 W. SHSs could be recovered and reused with 88.4% recovery after the fifth cycle. The molecular weights and monosaccharide compositions of PSPs were also determined. This study provides a new strategy for sustainable extraction of plant polysaccharides and other bioactive ingredients.


Subject(s)
Polygonatum , Solvents , Carbon Dioxide , Ultrasonics , Polysaccharides , Hydrophobic and Hydrophilic Interactions , Water , Amines , Monosaccharides , Plant Extracts
20.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500712

ABSTRACT

Bioactive compounds from olive mill pomace (OMP) were extracted through a two-step solid-liquid extraction procedure considering four factors at five levels of a central composite rotatable response surface design. The influence of the process variables time of the primary extraction (2.0-4.0 h), solvent-to-sample ratio during the primary extraction (5.0-10.0 mL/g), time of the secondary extraction (1.0-2.0 h), and the solvent-to-sample ratio during the secondary extraction (3.0-5.0 mL/g) were examined. The content of bioactive compounds was determined spectrophotometrically, and the individual phenolic compounds were evaluated by reserved-phase high-performance liquid chromatography (RP-HPLC). The Derringer's function was used to optimize the extraction process, and the best conditions were found to be 3.2 h for the primary extraction, 10.0 mL/g for the solvent-to-sample ratio and 1.3 h for the secondary extraction associated with a solvent-to-sample ratio of 3.0 mL/g, obtaining a total phenolic content of 50.0 (expressed as mg gallic acid equivalents (GAE)/g dry weight (dw). The response surface methodology proved to be a great alternative for reducing the number of tests, allowing the optimization of the extraction of phenolic antioxidants from OMP with a reduced number of experiments, promoting reductions in cost and analysis time.


Subject(s)
Antioxidants , Olea , Antioxidants/chemistry , Olea/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL