Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.493
Filter
1.
J Comp Neurol ; 532(7): e25656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980012

ABSTRACT

Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.


Subject(s)
Adrenal Glands , Vagus Nerve , Vagus Nerve/physiology , Humans , Animals , Adrenal Glands/physiology , Inflammation
2.
Disabil Rehabil ; : 1-13, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982892

ABSTRACT

PURPOSE: To investigate the effects of concurrent sensorimotor training (SMT) and transcranial direct current stimulation (tDCS) on the anticipatory and compensatory postural adjustments (APAs and CPAs) in patients with chronic low back pain (CLBP). METHOD: The interventions included (1) SMT plus tDCS and (2) SMT plus sham tDCS. Outcome measures were the normalized integrals of electromyography activity (NIEMG) during the phases of anticipatory and compensatory, and muscle onset latency. The investigated muscles were ipsilateral and contralateral multifidus (MF), transversus abdominus/internal oblique (TrA/IO), and gluteus medius (GM). RESULTS: Between-group comparisons demonstrated that ipsilateral TrA/IO NIEMG during CPA1 (p = 0.010) and ipsilateral GM NIEMG during CPA1 (p = 0.002) and CPA2 (p = 0.025) were significantly lower in the SMT combined with tDCS than in the control group. Furthermore, this group had greater NIEMG for contralateral GM during APA1 than the control group (p = 0.032). Moreover, the onset latency of contralateral TrA/IO was significantly earlier after SMT combined with tDCS (p = 0.011). CONCLUSIONS: Both groups that received SMT showed positive effects, but anodal tDCS had an added value over sham stimulation for improving postural control strategies in patients with CLBP. Indeed, SMT combined with tDCS leads to stronger APA and less demand for CPA. RCT REGISTRATION NUMBER: IRCT20220228054149N1. REGISTRATION DATE: 2022-04-04.


Evidence suggests that reduced excitability in the sensory and motor cortex is linked to chronic and recurring lower back pain.Increasing the excitability of these two areas using anodal transcranial direct current stimulation (tDCS), in conjunction with sensorimotor training (SMT), may improve anticipatory and compensatory postural control strategies.This study showed that the combination of SMT with tDCS targeting the sensory and motor cortex notably enhances motor preparation and refines postural control strategies in patients with chronic unilateral lumbar radiculopathy.Rehabilitation professionals are encouraged to integrate SMT with tDCS into treatment protocols to enhance the ability of individuals with back pain to handle postural disturbances in daily life, thereby potentially alleviating the persistence of their symptoms.Incorporating brain stimulation enhances the effectiveness of SMT for patients with chronic unilateral lumbar radiculopathy.

3.
Asian J Neurosurg ; 19(2): 210-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974440

ABSTRACT

Objective Intraoperative neuromonitoring (IONM) is an acknowledged tool for real-time neuraxis assessment during surgery. Somatosensory evoked potential (SSEP) and transcranial motor evoked potential (MEP) are commonest deployed modalities of IONM. Role of SSEP and MEP in intradural extramedullary spinal cord tumor (IDEMSCT) surgery is not well established. The aim of this study was to evaluate sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and transcranial MEP, in detection of intraoperative neurological injury in IDEMSCT patients as well as their postoperative limb-specific neurological improvement assessment at fixed intervals till 30 days. Materials and Methods Symptomatic patients with IDEMSCTs were selected according to the inclusion criteria of study protocol. On modified McCormick (mMC) scale, their sensory-motor deficit was assessed both preoperatively and postoperatively. Surgery was done under SSEP and MEP (transcranial) monitoring using appropriate anesthetic agents. Gross total/subtotal resection of tumor was achieved as per IONM warning alarms. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and MEP were calculated considering postoperative neurological changes as "reference standard." Patients were followed up at postoperative day (POD) 0, 1, 7, and 30 for convalescence. Statistical Analysis With appropriate tests of significance, statistical analysis was carried out. Receiver-operating characteristic curve was used to find cutoff point of mMC for SSEP being recordable in patients with higher neurological deficit along with calculation of sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and MEP for prediction of intraoperative neurological injury. Results Study included 32 patients. Baseline mean mMC value was 2.59. Under neuromonitoring, gross total resection of IDEMSCT was achieved in 87.5% patients. SSEP was recordable in subset of patients with mMC value less than or equal to 2 with diagnostic accuracy of 100%. MEP was recordable in all patients and it had 96.88% diagnostic accuracy. Statistically significant neurological improvement was noted at POD-7 and POD-30 follow-up. Conclusion SSEP and MEP individually carry high diagnostic accuracy in detection of intraoperative neurological injuries in patients undergoing IDEMSCT surgery. MEP continues to monitor the neuraxis, even in those subsets of patients where SSEP fails to record.

4.
Proc Natl Acad Sci U S A ; 121(29): e2316765121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990946

ABSTRACT

How does the brain simultaneously process signals that bring complementary information, like raw sensory signals and their transformed counterparts, without any disruptive interference? Contemporary research underscores the brain's adeptness in using decorrelated responses to reduce such interference. Both neurophysiological findings and artificial neural networks support the notion of orthogonal representation for signal differentiation and parallel processing. Yet, where, and how raw sensory signals are transformed into more abstract representations remains unclear. Using a temporal pattern discrimination task in trained monkeys, we revealed that the second somatosensory cortex (S2) efficiently segregates faithful and transformed neural responses into orthogonal subspaces. Importantly, S2 population encoding for transformed signals, but not for faithful ones, disappeared during a nondemanding version of this task, which suggests that signal transformation and their decoding from downstream areas are only active on-demand. A mechanistic computation model points to gain modulation as a possible biological mechanism for the observed context-dependent computation. Furthermore, individual neural activities that underlie the orthogonal population representations exhibited a continuum of responses, with no well-determined clusters. These findings advocate that the brain, while employing a continuum of heterogeneous neural responses, splits population signals into orthogonal subspaces in a context-dependent fashion to enhance robustness, performance, and improve coding efficiency.


Subject(s)
Macaca mulatta , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Models, Neurological , Male
5.
Biol Psychiatry ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950809

ABSTRACT

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

6.
Front Hum Neurosci ; 18: 1371631, 2024.
Article in English | MEDLINE | ID: mdl-38957693

ABSTRACT

Brain-computer interfaces (BCIs) are scientifically well established, but they rarely arrive in the daily lives of potential end-users. This could be in part because electroencephalography (EEG), a prevalent method to acquire brain activity for BCI operation, is considered too impractical to be applied in daily life of end-users with physical impairment as an assistive device. Hence, miniaturized EEG systems such as the cEEGrid have been developed. While they promise to be a step toward bridging the gap between BCI development, lab demonstrations, and home use, they still require further validation. Encouragingly, the cEEGrid has already demonstrated its ability to record visually and auditorily evoked event-related potentials (ERP), which are important as input signal for many BCIs. With this study, we aimed at evaluating the cEEGrid in the context of a BCI based on tactually evoked ERPs. To compare the cEEGrid with a conventional scalp EEG, we recorded brain activity with both systems simultaneously. Forty healthy participants were recruited to perform a P300 oddball task based on vibrotactile stimulation at four different positions. This tactile paradigm has been shown to be feasible for BCI repeatedly but has never been tested with the cEEGrid. We found distinct P300 deflections in the cEEGrid data, particularly at vertical bipolar channels. With an average of 63%, the cEEGrid classification accuracy was significantly above the chance level (25%) but significantly lower than the 81% reached with the EEG cap. Likewise, the P300 amplitude was significantly lower (cEEGrid R2-R7: 1.87 µV, Cap Cz: 3.53 µV). These results indicate that a tactile BCI using the cEEGrid could potentially be operated, albeit with lower efficiency. Additionally, participants' somatosensory sensitivity was assessed, but no correlation to the accuracy of either EEG system was shown. Our research contributes to the growing amount of literature comparing the cEEGrid to conventional EEG systems and provides first evidence that the tactile P300 can be recorded behind the ear. A BCI based on a thus simplified EEG system might be more readily accepted by potential end-users, provided the accuracy can be substantially increased, e.g., by training and improved classification.

7.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948808

ABSTRACT

Background: Emerging studies in humans have established the modulatory effects of repetitive transcranial magnetic stimulation (rTMS) over primary somatosensory cortex (S1) on somatosensory cortex activity and perception. However, to date, research in this area has primarily focused on the hand and fingers, leaving a gap in our understanding of the modulatory effects of rTMS on somatosensory perception of the orofacial system and speech articulators. Objective: The present study aimed to examine the effects of different types of theta-burst stimulation-continuous TBS (cTBS), intermittent TBS (iTBS), or sham-over the tongue representation of left S1 on tactile acuity of the tongue. Methods: In a repeated-measures design, fifteen volunteers participated in four separate sessions, where cTBS, iTBS, sham, or no stimulation was applied over the tongue representation of left S1. Effects of TBS were measured on both temporal and spatial perceptual acuity of tongue using a custom vibrotactile stimulator. Results: CTBS significantly impaired spatial amplitude threshold at the time window of 16-30 minutes after stimulation, while iTBS improved it at the same time window. The effect of iTBS, however, was smaller than cTBS. In contrast, neither cTBS nor iTBS had any effect on the temporal discrimination threshold. Conclusions: The current study establishes the validity of using TBS to modulate somatosensory perception of the orofacial system. Directly modifying somatosensation in the orofacial system has the potential to benefit clinical populations with abnormal tactile acuity, improve our understanding of the role of sensory systems in speech production, and enhance speech motor learning and rehabilitation.

8.
Int Urogynecol J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976027

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The relationship between somatosensory and motor components of urinary incontinence in individuals with MS has not been extensively addressed. The study was aimed at investigating the association of urinary incontinence severity with motor and sensory performance in women with multiple sclerosis (MS). METHODS: A cross-sectional single-center prospective study was conducted in 337 women with MS. The severity of MS symptoms was assessed using the SymptoMScreen questionnaire. The urinary incontinence status of the participants was evaluated using the Urinary Incontinence Inventory (UDI-6) and the Incontinence Impact Questionnaire (IIQ-7). Physical performance was considered with the Timed Up and Go (TUG) test and the 5-Times Sit-to-Stand (5TSTS) test. In addition, the sensory performance of the individuals with MS was queried using the Somatosensory Amplification Scale (SSAS) and Sensory Sensitivity Scale (SeSS). RESULTS: The UDI-6 (r=0.685, p<0.05) and IIQ-7 (r=0.759, p<0.05) correlated highly with SymptoMScreen. Among the physical performance measures, TUG (r=0.012, p<0.05) and 5TSTS (r=0.096, p<0.05) were weakly associated with UDI-6, but not statistically significantly. Similarly, there was a low correlation between IIQ-7 and TUG (r=-0.005, p<0.05) and 5TSTS (r=0.068, p<0.05). UDI-6 (0.360, p<0.05) and IIQ-7 (0.378, p<0.05) correlated moderately with SASS. On the other hand, SeSS had a low correlation coefficient with UDI-6 (0.305, p<0.05) and IIQ-7 (0.272, p<0.05). CONCLUSIONS: The results revealed that sensory performance was more associated with urinary incontinence in women with MS than physical performance. The urinary incontinence severity was also related to MS symptoms (bladder control, walking, spasticity, stiffness cognitive function). Future studies should consider the potential impact of sensory performance on urinary incontinence and focus on explaining the mechanism behind this relationship.

9.
Front Hum Neurosci ; 18: 1399316, 2024.
Article in English | MEDLINE | ID: mdl-38903407

ABSTRACT

A quick correction mechanism of the tongue has been formerly experimentally observed in speech posture stabilization in response to a sudden tongue stretch perturbation. Given its relatively short latency (< 150 ms), the response could be driven by somatosensory feedback alone. The current study assessed this hypothesis by examining whether this response is induced in the absence of auditory feedback. We compared the response under two auditory conditions: with normal versus masked auditory feedback. Eleven participants were tested. They were asked to whisper the vowel /e/ for a few seconds. The tongue was stretched horizontally with step patterns of force (1 N during 1 s) using a robotic device. The articulatory positions were recorded using electromagnetic articulography simultaneously with the produced sound. The tongue perturbation was randomly and unpredictably applied in one-fifth of trials. The two auditory conditions were tested in random order. A quick compensatory response was induced in a similar way to the previous study. We found that the amplitudes of the compensatory responses were not significantly different between the two auditory conditions, either for the tongue displacement or for the produced sounds. These results suggest that the observed quick correction mechanism is primarily based on somatosensory feedback. This correction mechanism could be learned in such a way as to maintain the auditory goal on the sole basis of somatosensory feedback.

10.
Sensors (Basel) ; 24(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38894094

ABSTRACT

We assessed the test-retest reliability and discriminative ability of a somatosensory temporal discrimination (SSTD) assessment tool for fibromyalgia syndrome (FMS) and determined if pain-related variables were associated with SSTD performance. Twenty-five women with FMS and twenty-five asymptomatic women were assessed during two sessions 7 to 10 days apart. The proportion of correct responses (range 0-100) was calculated. Sociodemographic information was collected for both groups. The participants with FMS also completed the widespread pain index and the Brief Pain Inventory. Test-retest reliability was verified by calculating intraclass correlation coefficients. Discriminative ability was verified by a between-group comparison of scores using a t-test. Associations between SSTD score and pain variables were tested using Pearson or Spearman correlation coefficients. The test-retest reliability of the SSTD score was excellent (ICC > 0.9, CI: 0.79-0.96) for the asymptomatic group and good for the FMS group (ICC: 0.81, 95% CI: 0.62-0.91). The median (Q1-Q3) test session SSTD score differed significantly between the FMS 84.1 (71-88) and the asymptomatic 91.6 (83.4-96.1) groups (p < 0.001). Only pain duration was associated with the SSTD score. In conclusion, the new SSTD test seems reliable for people with FMS and is discriminative. Further studies should examine its sensitivity to change and correlations with other SSTD tests.


Subject(s)
Fibromyalgia , Humans , Fibromyalgia/physiopathology , Fibromyalgia/diagnosis , Female , Middle Aged , Adult , Reproducibility of Results , Pain Measurement/methods
11.
Prog Neurobiol ; 239: 102633, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830482

ABSTRACT

The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.


Subject(s)
Brain Mapping , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Macaca , Male , Macaca mulatta
12.
Pain Rep ; 9(4): e1162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38835743

ABSTRACT

Introduction: Notalgia paresthetica (NP) is a chronic condition characterized by pruritus and other unpleasant dysesthetic sensations unilaterally on the subscapular back. Its specific underlying mechanisms are largely unknown, though hypothesized to be neuropathic. Determination of possible somatosensory contributors to the condition could pave the way for novel treatments. Objectives: Given the potential involvement of non-pruritic mechanisms in NP, our objective was to broadly characterize the somatosensory function in NP-affected and unaffected skin using methods that have been standardized in pain-free controls and painful neuropathic disorders. We hypothesized that if NP is caused by neuropathic mechanisms not targeted directly to pruritoceptors in the skin, somatosensory abnormalities would not be itchspecific. Second, given the lack of symptoms on the contralateral side of the back, we hypothesized that this region would be normally sensitive. Methods: In this study, quantitative sensory testing (QST) was used to comprehensively assess the somatosensory function in 15 adult patients with NP. Standardized QST metrics were performed in the NP-affected region and compared with the contralateral asymptomatic skin and itch-free individuals using an age, gender, and site-matched reference data set. Results: There were no significant differences in sensitivity between symptomatic and asymptomatic skin, except for increased mechanical-evoked itch on the itchy side. However, reference data set comparisons revealed bilateral hyposensitivity to innocuous cold and noxious pinprick and higher temporal summation of pain in patients with NP. In addition, compared with reference data, patients with NP demonstrated decreased sensitivity to cold and pinprick, presence of paradoxical heat sensations, and increased wind-up of pain. Conclusion: These results suggest a role for Aδ fiber pathways and central sensitization in NP-associated itch. More research is needed to determine whether sensory differences extend beyond the NP-affected dermatomal level and what might cause neuropathy specifically targeting Aδ fibers.

13.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836408

ABSTRACT

Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.


Subject(s)
Magnetoencephalography , Somatosensory Cortex , Humans , Male , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Female , Child , Evoked Potentials, Somatosensory/physiology , Brain Mapping , Touch Perception/physiology , Child Development/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Physical Stimulation , Motor Cortex/physiology , Motor Cortex/growth & development
14.
Article in English | MEDLINE | ID: mdl-38825526

ABSTRACT

BACKGROUND: Methylmercury (MeHg), the causative agent of Minamata disease, damages the cranial nervous system and causes specific sensory disturbances, especially hypoesthesia, in the extremities. However, recent reports demonstrate that patients with chronic Minamata disease conversely develop neuropathic pain in the lower extremities. Studies on our established Minamata disease model rats showed that MeHg-mediated neurodegeneration might induce neuropathic pain by over time through inducing rewiring with neuronal activation in the somatosensory cortex via microglial activation in the spinal dorsal horn. METHODS: In this study, the effects of gabapentin, a potentially effective treatment for neuropathic pain, was evaluated using this Minamata disease model rats. To further elucidate the mechanism of its medicinal effects, histochemical and biochemical analyses of the nervous system of Minamata disease model rats were conducted. RESULTS: Gabapentin treatment restored the reduction in the pain threshold caused by MeHg exposure in rats. Histochemical and biochemical analyses revealed that gabapentin showed no effect on MeHg-induced neurodegeneration in entire nervous system and microglial activation in the spinal dorsal horn. However, it was shown that gabapentin may reduce excessive synaptogenesis through its antagonist action on the alpha2-delta-1 subunit of calcium channels in the somatosensory cortex. CONCLUSIONS: These results indicate that gabapentin may alleviated neuropathic pain in MeHg poisoning, as typified by Minamata disease, by reversibly modulation synaptic rewiring in the somatosensory cortex.


Subject(s)
Disease Models, Animal , Gabapentin , Neuralgia , Animals , Gabapentin/pharmacology , Gabapentin/therapeutic use , Neuralgia/drug therapy , Rats , Male , Methylmercury Compounds , Analgesics/pharmacology , Analgesics/therapeutic use , Amines/pharmacology , Amines/therapeutic use , Cyclohexanecarboxylic Acids/pharmacology , Cyclohexanecarboxylic Acids/therapeutic use , gamma-Aminobutyric Acid/pharmacology , Rats, Wistar
15.
BMJ Neurol Open ; 6(1): e000665, 2024.
Article in English | MEDLINE | ID: mdl-38860229

ABSTRACT

Introduction: Dissociative seizures often occur in the context of dysregulated affective arousal and entail dissociative symptoms such as a disintegration of bodily awareness. However, the interplay between affective arousal and changes in interoceptive processing at the onset of dissociative seizures is not well understood. Methods: Using retrospective routine data obtained from video-electroencephalography telemetry in a university hospital epilepsy monitoring unit, we investigate ictal changes in cardiac indices of autonomic arousal and heartbeat evoked potentials (HEPs) in 24 patients with dissociative seizures. Results: Results show autonomic arousal during seizures with increased heart rate and a shift towards sympathetic activity. Compared with baseline, ictal HEP amplitudes over central and right prefrontal electrodes (F8, Fz) were significantly less pronounced during seizures, suggesting diminished cortical representation of interoceptive information. Significant correlations between heart rate variability measures and HEPs were observed at baseline, with more sympathetic and less parasympathetic activity related to less pronounced HEPs. Interestingly, these relationships weakened during seizures, suggesting a disintegration of autonomic arousal and interoceptive processing during dissociative seizures. In a subgroup of 16 patients, MRI-based cortical thickness analysis found a correlation with HEP amplitudes in the left somatosensory association cortex. Conclusions: These findings possibly represent an electrophysiological hint of how autonomic arousal could negatively impact bodily awareness in dissociative seizures, and how these processes might be related to underlying brain structure.

16.
Front Neurol ; 15: 1403050, 2024.
Article in English | MEDLINE | ID: mdl-38872829

ABSTRACT

Background: Laryngeal dystonia is a task-specific focal dystonia of laryngeal muscles that impairs speech and voice production. At present, there is no cure for LD. The most common therapeutic option for patients with LD involves Botulinum neurotoxin injections. Objective: Provide empirical evidence that non-invasive vibro-tactile stimulation (VTS) of the skin over the voice box can provide symptom relief to those affected by LD. Methods: Single-group 11-week randomized controlled trial with a crossover between two dosages (20 min of VTS once or 3 times per week) self-administered in-home in two 4-week blocks. Acute effects of VTS on voice and speech were assessed in-lab at weeks 1, 6 and 11. Participants were randomized to receive either 40 Hz or 100 Hz VTS. Main outcome measures: Primary: smoothed cepstral peak prominence (CPPS) of the voice signal to quantify voice and speech abnormalities, and perceived speech effort (PSE) ranked by participants as a measure of voice effort (scale 1-10). Secondary: number of voice breaks during continuous speech, the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) inventory as a measure of overall disease severity and the Voice Handicap Index 30-item self report. Results: Thirty-nine people with a confirmed diagnosis of adductor-type LD (mean [SD] age, 60.3 [11.3] years; 18 women and 21 men) completed the study. A single application of VTS improved voice quality (median CPPS increase: 0.41 dB, 95% CI [0.20, 0.61]) and/or reduced voice effort (PSE) by at least 30% in up to 57% of participants across the three study visits. Effects lasted from less than 30 min to several days. There was no effect of dosage and no evidence that the acute therapeutic effects of VTS increased or decreased longitudinally over the 11-week study period. Both 100 and 40 Hz VTS induced measurable improvements in voice quality and speech effort. VTS induced an additional benefit to those receiving Botulinum toxin. Participants, not receiving Botulinum treatment also responded to VTS. Conclusion: This study provides the first systematic empirical evidence that the prolonged use of laryngeal VTS can induce repeatable acute improvements in voice quality and reductions of voice effort in LD. Clinical trial registration: ClinicalTrials.gov ID: NCT03746509.

17.
Front Neurosci ; 18: 1344758, 2024.
Article in English | MEDLINE | ID: mdl-38872944

ABSTRACT

Rodents rely on their whiskers as vital sensory tools for tactile perception, enabling them to distinguish textures and shapes. Ensuring the reliability and constancy of tactile perception under varying stimulus conditions remains a fascinating and fundamental inquiry. This study explores the impact of stimulus configurations, including whisker movement velocity and object spatial proximity, on texture discrimination and stability in rats. To address this issue, we employed three distinct approaches for our investigation. Stimulus configurations notably affected tactile inputs, altering whisker vibration's kinetic and kinematic aspects with consistent effects across various textures. Through a texture discrimination task, rats exhibited consistent discrimination performance irrespective of changes in stimulus configuration. However, alterations in stimulus configuration significantly affected the rats' ability to maintain stability in texture perception. Additionally, we investigated the influence of stimulus configurations on cortical neuronal responses by manipulating them experimentally. Notably, cortical neurons demonstrated substantial and intricate changes in firing rates without compromising the ability to discriminate between textures. Nevertheless, these changes resulted in a reduction in texture neuronal response stability. Stimulating multiple whiskers led to improved neuronal texture discrimination and maintained coding stability. These findings emphasize the importance of considering numerous factors and their interactions when studying the impact of stimulus configuration on neuronal responses and behavior.

18.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38834298

ABSTRACT

In the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes). We found that M1 synapses onto IT cells displayed modest short-term depression, whereas synapses onto PT neurons showed robust short-term facilitation. Despite M1 inputs to IT cells depressing, their slower kinetics resulted in summation and a response that increased during short trains. In contrast, summation was minimal in PT neurons due to the fast time course of their M1 responses. The functional consequences of this reduced summation, however, were outweighed by the strong facilitation at these M1 synapses, resulting in larger response amplitudes in PT neurons than IT cells during repetitive stimulation. To understand the impact of facilitating M1 inputs on PT output, we paired trains of inputs with single backpropagating action potentials, finding that repetitive M1 activation increased the probability of bursts in PT cells without impacting the time dependence of this coupling. Thus, there are two parallel but dynamically distinct systems of M1 synaptic excitation in L5 of S1, each defined by the short-term dynamics of its synapses, the class of postsynaptic neurons, and how the neurons respond to those inputs.


Subject(s)
Motor Cortex , Optogenetics , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Motor Cortex/physiology , Male , Female , Neural Pathways/physiology , Synapses/physiology , Mice , Neurons/physiology , Mice, Inbred C57BL , Vibrissae/physiology , Pyramidal Tracts/physiology , Mice, Transgenic , Excitatory Postsynaptic Potentials/physiology
19.
J Dent ; 147: 105148, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909648

ABSTRACT

OBJECTIVE: This cohort study aimed to assess the incidence of somatosensory alterations after implant surgery using standardized quantitative and qualitative sensory testing. METHODS: 33 participants with single-tooth loss, undergoing immediate implant loading were included. Quantitative Sensory Testing (QST) and Qualitative Sensory Testing (QualST) were conducted at eight time points over a year (baseline to 1 year). Two-Way Repeated Measures ANOVA and post hoc Tukey test were used on QST values and Cochran Q test on QualST. RESULTS: The study revealed significant increase in thermal thresholds overtime. At the operated side, overall Cold Pain Threshold (extraoral: p = 0.030; intraoral: p < 0.001), and Cold Detection Threshold (intraoral: p < 0.001) increased overtime. In contralateral region, maxilla Cold Detection Threshold (extraoral: p = 0.024; intraoral: p = 0.031), Warm Detection Threshold (extraoral: p = 0.026; intraoral: p = 0.047) and overall Cold Pain Threshold (extraoral and intraoral: p < 0.001) also increased. QualST showed extraoral pinprick (p = 0.032) and intraoral pinprick (p = 0.000), cold (p = 0.000) and touch (p = 0.002) stimuli abnormalities overtime. CONCLUSIONS: Somatosensory alterations after implant surgery were detected in both quantitative and qualitative sensory assessments, but rapidly decreased during the first follow-ups, and then continuously until 1-year. CLINICAL SIGNIFICANCE: This study provides clinical and controlled evidence on the real effect of the somatosensory alterations overtime, leading to a better understanding of neurosensory behaviour after single-tooth dental implant rehabilitation.

20.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928431

ABSTRACT

In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.


Subject(s)
Gamma Rays , Nerve Growth Factors , Sensorimotor Cortex , Animals , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/radiation effects , Gamma Rays/adverse effects , Rats , Male , Nerve Growth Factors/metabolism , Radiation, Ionizing , Neurotrophin 3/metabolism , Aging , Locomotion/radiation effects , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...