Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cogn Affect Behav Neurosci ; 24(1): 1-18, 2024 02.
Article in English | MEDLINE | ID: mdl-38030912

ABSTRACT

All experiences preserved within episodic memory contain information on the space and time of events. The hippocampus is the main brain region involved in processing spatial and temporal information for incorporation within episodic memory representations. However, the other brain regions involved in the encoding and retrieval of spatial and temporal information within episodic memory are unclear, because a systematic review of related studies is lacking and the findings are scattered. The present study was designed to integrate the results of functional magnetic resonance imaging and positron emission tomography studies by means of a systematic review and meta-analysis to provide converging evidence. In particular, we focused on identifying the brain regions involved in the retrieval of spatial and temporal information. We identified a spatial retrieval network consisting of the inferior temporal gyrus, parahippocampal gyrus, superior parietal lobule, angular gyrus, and precuneus. Temporal context retrieval was supported by the dorsolateral prefrontal cortex. Thus, the retrieval of spatial and temporal information is supported by different brain regions, highlighting their different natures within episodic memory.


Subject(s)
Memory, Episodic , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Temporal Lobe , Parietal Lobe , Magnetic Resonance Imaging/methods , Mental Recall
2.
Behav Brain Res ; 435: 114057, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35970253

ABSTRACT

Episodic memory allows us to remember three main elements regarding an event: what (it is), where (it is in space), and when (it appears). The brain's electrical activity signaling the occurrence of these processes has been studied separately, revealing different patterns of ERP components and changes in the EEG theta band amplitude. However, how these patterns signal the retrieval of the temporal and spatial contexts of the same episode is unknown. The objective of this study was to evaluate the ERP components and the EEG theta band in association to the retrieval of the what, where, and when of the same episode through a source memory task. Three types of trials were identified here: total retrieval (what, where, and when), spatial retrieval (what and where), and correct rejections (correctly identified as new items). Attentional components, N200 and P300, and theta band were sensitive to the amount of information retrieved from episodic memory. Total retrieval and spatial trials elicited higher mean amplitude of FN400 and LPC, familiarity and recollection markers, respectively, than correct rejections. Our results suggest that early attention mechanisms can discern the strength of retrieval; in turn, familiarity and recollection mechanisms participate in the retrieval of the main contexts of episodic memory, but not in a cumulative way.


Subject(s)
Memory, Episodic , Brain/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Mental Recall/physiology
3.
Front Aging Neurosci ; 13: 724595, 2021.
Article in English | MEDLINE | ID: mdl-34526891

ABSTRACT

The aim of the study was to identify nutrients that have the ability to impact brain functioning and, as a consequence, influence episodic memory. In particular, we examined recollection, the ability to recall details of previous experiences, which is the episodic memory process most affected as age advances. A sample of 1,550 healthy participants between 21 and 80 years old participated in the study. Nutritional intake was examined through a food frequency questionnaire and software developed to determine the daily consumption of 64 nutrients based on food intake during the last year. Recollection was measured through a computerized source memory paradigm. First, we identified which nutrients influence recollection across the entire adult life span. Then, moderator analyses were conducted by dividing the sample into young (21-40 years old), middle-aged (41-60 years old) and older (61-80 years old) adults to establish in which life stage nutrients influence episodic memory. Across the adult life span, recollection accuracy was shown to benefit from the intake of sodium, heme, vitamin E, niacin, vitamin B6, cholesterol, alcohol, fat, protein, and palmitic, stearic, palmitoleic, oleic, gadoleic, alpha-linoleic and linoleic acid. The effects of energy, maltose, lactose, calcium and several saturated fatty acids on recollection were modulated by age; in older adults, the consumption of these nutrients negatively influenced episodic memory performance, and in middle-aged adults, only lactose had negative effects. Several brain mechanisms that support episodic memory were influenced by specific nutrients, demonstrating the ability of food to enhance or deteriorate episodic memory.

4.
Front Aging Neurosci ; 11: 17, 2019.
Article in English | MEDLINE | ID: mdl-30804777

ABSTRACT

Source memory decline has been identified as one of the types of memory most seriously affected during older age. It refers to our capacity to recollect the contextual information in which our experiences take place. Although most elderly adults will be affected by progressive source memory decline, a subset of individuals will not follow this average pattern; instead, their source memory capabilities will remain functional. Likewise, a minority of individuals will manifest an extreme decay of their source memory abilities. The objective of the present study was to identify among 120 potential predictors that significantly contributed to these two extreme source memory outcomes. Spatial source memory was measured in a sample of 519 healthy individuals between 61 and 80 years old. Individuals who performed below the 20th and above the 80th percentiles in the source memory task were defined as individuals whose episodic memory failed and succeeded, respectively. Logistic models identified five and six significant predictors of source memory success and failure in older age, respectively. High source memory performance was mainly predicted by healthy cardiovascular markers and psychological traits, whereas low source memory performance was primarily predicted by consumption habits and by less engagement in mental activities. The models identified relevant biological and life experiences that underlie these unusual source memory outcomes in older age.

SELECTION OF CITATIONS
SEARCH DETAIL