Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
Biofabrication ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986466

ABSTRACT

This study presents a biphasic approach to overcome the limitations of current testicular organoid (TO) cultures, including histological heterogeneity, germ cell loss and absence of spermatogenesis. Agarose microwells were utilized to create TOs from prepubertal C57BL/6J testicular cells. First emphasis was on improving germ cell survival during the initial 2-week reorganization phase by comparing α-MEM + 10% KSR medium, known to support TO generation in mice, to three optimized media (1-3). Cell densities and culture dynamics were also tested to recreate histological resemblance to testes. After optimizing germ cell survival and cell organization, the effect of growth factors and immunomodulation through CD45+ immune cell depletion or dexamethasone (DEX) supplementation were assessed for enhancing spermatogenesis during the subsequent differentiation phase. Testicular cells self-reorganized into organoids resembling the testicular anatomical unit, characterized by one tubule-like structure surrounded by interstitium. Media 1 3 proved superior for organoid growth during the reorganization phase, with TOs in medium 3 exhibiting germ cell numbers (7.4 ± 4.8%) comparable to controls (9.3 ± 5.3%). Additionally, 37 ± 30% demonstrated organized histology from 32 × 103 cells under static conditions. Switching to α-MEM + 10% KSR during the differentiation phase increased formation efficiency to 85 ± 7%, along with elevated germ cell numbers, testosterone production (3.1 ± 0.9 ng/mL) and generation of γH2AX+ spermatid-like cells (steps 8-11, 1.2 ± 2.2% of the total). Adding differentiation factors to the α-MEM increased spermatid-like cell numbers to 2.9 ± 5.9%, confirmed through positive staining for CREM, TP1, and PNA. Although, these remained diploid with irregular nuclear maturation. DEX supplementation had no additional effect, and immune cell depletion adversely impacted TO formation. The manipulability of TOs offers advantages in studying male infertility and exploring therapies, with scalability enabling high-throughput chemical screening and reducing animal usage in reproductive toxicity and drug discovery studies.

2.
Reprod Biol ; 24(3): 100921, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964220

ABSTRACT

This study explores the effects of Trib3 gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the Trib3 gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, Trib3 gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.

3.
Reprod Domest Anim ; 59(7): e14661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979950

ABSTRACT

Spermatogonial stem cells (SSCs) comprise the foundation of spermatogenesis and hence have great potential for fertility preservation of rare or endangered species and the development of transgenic animals and birds. Yet, developing optimal conditions for the isolation, culture, and maintenance of SSCs in vitro remains challenging, especially for chicken. The objectives of this study were to (1) find the optimal age for SSC isolation in Huaixiang chicken, (2) develop efficient protocols for the isolation, (3) enrichment, and (4) culture of isolated SSCs. In the present study, we first compared the efficiency of SSC isolation using 11 different age groups (8-79 days of age) of Huaixiang chicken. We found that the testes of 21-day-old chicken yielded the highest cell viability. Next, we compared two different enzymatic combinations for isolating SSCs and found that 0.125% trypsin and 0.02 g/L EDTA supported the highest number and viability of SSCs. This was followed by investigating optimal conditions for the enrichment of SSCs, where we observed that differential plating had the highest enrichment efficiency compared to the Percoll gradient and magnetic-activated cell sorting methods. Lastly, to find the optimal culture conditions of SSCs, we compared adding different concentrations of foetal bovine serum (FBS; 2%, 5%, 7%, and 10%) and different concentrations of GDNF, bFGF, or LIF (5, 10, 20, or 30 ng/mL). We found that a combination of 2% FBS and individual growth factors, including GDNF (20 ng/mL), bFGF (30 ng/mL), or LIF (5 ng/mL), best supported the proliferation and colony formation of SSCs. In conclusion, SSCs can be optimally isolated through enzymatic digestion from testes of 21-day-old chicken, followed by enrichment using differential plating. Furthermore, adding 2% FBS and optimized concentrations of GFNF, bFGF, or LIF in the culture promotes the proliferation of chicken SSCs.


Subject(s)
Adult Germline Stem Cells , Cell Culture Techniques , Cell Separation , Chickens , Animals , Male , Cell Culture Techniques/veterinary , Cell Separation/methods , Cell Separation/veterinary , Testis/cytology , Spermatogonia/cytology , Cell Survival , Cells, Cultured
4.
Fertil Steril ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992744

ABSTRACT

IMPORTANCE: Advances in the treatment of childhood cancer have significantly improved survival rates, with more than 80% of survivors reaching adulthood. However, gonadotoxic cancer treatments endanger future fertility and prepubertal males have no option to preserve fertility by sperm cryopreservation. Also, boys with cryptorchidism are at risk of compromised fertility in adulthood. OBJECTIVE: This scoping review focuses on male fertility restoration, particularly relevant for prepubertal male cancer survivors and boys with cryptorchidism. The aim was to investigate current evidence for fertility restoration strategies, explore barriers to clinical implementation, and outline potential steps to overcome these barriers. EVIDENCE REVIEW: The review was conducted following the PRISMA-ScR criteria and previously published guidelines and examines studies using human testis tissue of prepubertal boys or healthy male adults. A literature search in PubMed was conducted and 72 relevant studies were identified, including in vivo and in vitro approaches. FINDINGS: In vivo strategies, such as testis tissue engraftment and spermatogonial stem cell (SSC) transplantation, hold promise for promoting cell survival and differentiation. Yet complete spermatogenesis has not been achieved. In vitro approaches focus on the generation of male germ cells from direct germ cell maturation in various culture systems, alongside human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs). These approaches mark significant advancements in understanding and promoting spermatogenesis but achieving fully functional spermatozoa in vitro remains a challenge. Barriers to clinical implementation include the risk of reintroducing malignant cells and introduction of epigenetic changes. CONCLUSION: Male fertility restoration is an area in rapid development. Based on the reviewed studies the most promising and advanced strategy for restoring male fertility using cryopreserved testis tissue is direct testis tissue transplantation. RELEVANCE: This review identifies persistent barriers to the clinical implementation of male fertility restoration. However, direct transplantation of frozen-thawed testis tissue remains a promising strategy that is on the verge of clinical application.

5.
Biol Reprod ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993049

ABSTRACT

Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.

6.
Biomolecules ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927011

ABSTRACT

Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs are strictly regulated by the SSC niche. Therefore, understanding the developmental pattern of SSCs is crucial for spermatogenesis. The Shaziling pig is a medium-sized indigenous pig breed originating from central China. It is renowned for its superior meat quality and early male sexual maturity. The spermatogenic ability of the boars is of great economic importance to the pig industry. To investigate testicular development, particularly the pattern of SSC development in Shaziling pigs, we used single-cell transcriptomics to identify gene expression patterns in 82,027 individual cells from nine Shaziling pig testes at three key postnatal developmental stages. We generated an unbiased cell developmental atlas of Shaziling pig testicular tissues. We elucidated the complex processes involved in the development of SSCs within their niche in the Shaziling pig. Specifically, we identified potential marker genes and cellular signaling pathways that regulate SSC self-renewal and maintenance. Additionally, we proposed potential novel marker genes for SSCs that could be used for SSC isolation and sorting in Shaziling pigs. Furthermore, by immunofluorescence staining of testicular tissues of different developmental ages using marker proteins (UCHL1 and KIT), the developmental pattern of the spermatogonia of Shaziling pigs was intensively studied. Our research enhances the comprehension of the development of SSCs and provides a valuable reference for breeding Shaziling pigs.


Subject(s)
RNA-Seq , Spermatogonia , Testis , Animals , Male , Swine/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Testis/metabolism , Testis/cytology , Testis/growth & development , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/cytology , Single-Cell Analysis , Cell Differentiation/genetics , Spermatogenesis/genetics , Stem Cells/metabolism , Stem Cells/cytology , Transcriptome/genetics
7.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722330

ABSTRACT

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Subject(s)
Apoptosis , Cell Proliferation , Spermatogenesis , Thiolester Hydrolases , Wnt Signaling Pathway , Humans , Male , Adult Germline Stem Cells/metabolism , Apoptosis/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Spermatogenesis/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Testis/metabolism , Testis/cytology , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Wnt Signaling Pathway/genetics
8.
World J Mens Health ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38606862

ABSTRACT

PURPOSE: In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models. MATERIALS AND METHODS: SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis. RESULTS: BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis. CONCLUSIONS: Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.

9.
Anat Cell Biol ; 57(2): 163-171, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38590095

ABSTRACT

In the last decade, melatonin has gained recognition as a potent scavenger and an effective antioxidant capable of neutralizing free radicals, including reactive oxygen species. Additionally, it exhibits anti-apoptotic properties. In this review, we will examine a compilation of articles that explore the cellular signaling function of melatonin on spermatogonial stem cells (SSCs) and adjacent cells such as Sertoli and Leydig cells. These cells play a crucial role in the proliferation of SSCs both in vitro and in vivo. In this review, we analyze the function of melatonin in the proliferation of SSCs from other aspects. For this purpose, we examine the articles based on the presence of melatonin on SSCs in four groups: As a supplement in SSCs medium culture, SSCs three-dimensional culture system, SSCs freezing medium, and as a therapeutic factor in vivo. Mechanisms of growth and proliferation of SSCs were considered. The purpose of this study is to investigate the potential effects of melatonin as a powerful antioxidant or growth stimulant for SSCs, both in vivo and in vitro.

10.
Reprod Domest Anim ; 59(4): e14561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613192

ABSTRACT

Cryptorchidism affects spermatogenesis and testis development, often resulting in stallion subfertility/infertility. This study aims to identify the specific germ cells impacted by cryptorchism in stallions. In a previous study, we found that PGP9.5 and VASA are molecular markers expressed in different germ cells within stallions. Herein, we assessed the heat stress-induced response of spermatogonial stem cells (SSCs) in the seminiferous tubules (ST) of cryptorchid stallion testes (CST) and normal stallion testes (NST). This goal was accomplished by comparing PGP9.5 and VASA expression patterns through reverse transcription quantitative PCR and immunofluorescence assays. We also compared the cross-sectional ST area between groups. Six post-pubertal Thoroughbred unilateral cryptorchid stallions were used. The relative abundance of the mRNA transcripts of PGP9.5 and VASA was significantly upregulated in the NST group than in the CST group. Additionally, the cross-sectional ST area and localization of PGP9.5 and VASA in germ cells were significantly higher in the NST group than in the CST group. Regarding Leydig cells, PGP9.5 staining was observed in both groups. Spermatogonia, primary spermatocytes and secondary spermatocytes were immunostained with VASA in the NST group, while immunostaining was only observed in spermatogonia in the CST group. These results indicate long-term exposure to heat stress conditions, such as cryptorchidism, directly impacts germ cell proliferation and differentiation, leading to impaired spermatogenesis and compromised fertility in stallions.


Subject(s)
Cryptorchidism , Horse Diseases , Infertility , Animals , Horses , Male , Cryptorchidism/veterinary , Cross-Sectional Studies , Seminiferous Tubules , Spermatogonia , Infertility/veterinary
11.
Stem Cell Rev Rep ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684571

ABSTRACT

Malfunction in spermatogenesis due to genetic diseases, trauma, congenital disorders or gonadotoxic treatments results in infertility in approximately 7% of males. The behavior of spermatogonial stem cells (SSCs) within three-dimensional, multifactorial, and dynamic microenvironment implicates a niche that serves as a repository for fertility, since can serve as a source of mature and functional male germ cells. Current protocols enable reprogramming of mature somatic cells into induced pluripotent stem cells (iPSCs) and their limited differentiation to SSCs within the range of 0-5%. However, the resulting human iPSC-derived haploid spermatogenic germ cell yield in terms of number and functionality is currently insufficient for transfer to infertility clinic as a therapeutic tool. In this article, we reviewed the evolution of experimental culture platforms and introduced a novel iPSCs-based approach for in vitro spermatogenesis based on a niche perspective bearing cellular, chemical, and physical factors that provide the complex arrangement of testicular seminiferous tubules embedded within a vascularized stroma. We believe that bioengineered organoids supported by smart bio-printed tubules and microfluidic organ-on-a-chip systems offer efficient, precise, personalized platforms for autologous pluripotent stem cell sources to undergo the spermatogenetic cycle, presenting a promising tool for infertile male patients with complete testicular aplasia.

12.
Curr Radiopharm ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38584548

ABSTRACT

BACKGROUND: The reproductive organ, housing spermatogonial stem cells (SSCs), undergoes ongoing division impacted by the irradiation dosage and exposure duration. Within the male reproductive organ, germ stem cells (spermatogonia) and somatic cells (Sertoli and Leydig cells) are present. Lower doses of ionizing (>4-6 Gy) and non-ionizing radiation (radiofrequency and microwave range 900 MHz - 2.45 GHz) may cause sperm-related issues, while higher doses (15 Gy) may affect Leydig cells and testosterone production. Response to radiation varies with age and pubescence. Spermatogonial stem cells, crucial for regenerating the spermatogenic lineage, express molecular markers like Estrogen receptor, FSH (Follicular Stimulating Hormone) receptor, TLR-4 (Toll-like Receptor-4), TLR-5 (Toll-like Receptor-5), FGF2 (Fibroblast Growth Factor-2), KIT (Receptor Tyrosine Kinase), AT-1 (Angiotensin II Type-1 Receptor), LXRs-γ (Liver X Receptor-γ), TNF-ß (Tumor Necrosis Factor-ß), and PCNA (Proliferating Cell Nuclear Antigen), influencing stem cell activity in testes. OBJECTIVE: This study aimed to review the various available radioprotective agents and their efficacy in targeting the male reproductive system from the available literature. RESULT: Various radioprotective herbal/synthetic/microbial/metallic extracts/formulations/ drugs [Septilin, Silymarin, Organic Turmeric, Oestrogen, Melatonin, Febuxostat, SQGD (Semiquinone glucoside derivative), Rapamycin, Entolimod, Zinc, Selenium, etc.] have been investigated up to exposure, but owing to effectiveness issues, they are unable to fulfil the aim to the fullest of restoring male fertility and normal testosterone levels during such eventuality. CONCLUSION: Further study is needed to optimize these tactics and fill knowledge gaps. Also, the effective components of herbal, synthetic drugs, etc., should be isolated and tested up to clinical levels, paving the way for successful radioprotection and radiomitigation strategies in the male reproductive system.

13.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38512324

ABSTRACT

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Subject(s)
DNA Breaks, Double-Stranded , Animals , Male , Mice , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Loss of Function Mutation , Mammals/metabolism , Meiosis/genetics , Mutation , Spermatocytes/metabolism , Germ Cells/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism
14.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38503350

ABSTRACT

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Subject(s)
Acetates , Glial Cell Line-Derived Neurotrophic Factor , Halogenated Diphenyl Ethers , Phenols , Sertoli Cells , Mice , Animals , Male , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Testis/metabolism , Spermatogonia , Spermatogenesis , Tretinoin/metabolism , Tretinoin/pharmacology
15.
Animals (Basel) ; 14(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38473188

ABSTRACT

In vitro gamete derivation has been proposed as an interesting strategy for treatment of infertility, improvement of genetic traits, and conservation of endangered animals. Spermatogonial stem cells (SSCs) are primary candidates for in vitro gamete derivation; however, recently, mesenchymal stem cells (MSCs) have also been proposed as candidates for germ cell (GCs) differentiation mainly due to their transdifferentiating capacity. The objective of the present study was to compare the potential for GC differentiation of bovine peripheral blood-derived MSCs (PB-MSCs) and SSCs under the effect of conditioned medium (CM) derived from Sertoli cells (SCs/CM). Samples were collected every 7 days for 21 days and analyzed for pluripotent, GC, and MSC marker expression. The absence of OCT4 and the increased (p < 0.05) expression of NANOG seems to play a role in SSC differentiation, whereas the absence of NANOG and the increased expression (p < 0.05) of OCT4 may be required for PB-MSC differentiation into GCs. SSCs cultured with SCs/CM increased (p < 0.05) the expression of PIWIL2 and DAZL, while PB-MSCs cultured under the same condition only increased (p < 0.05) the expression of DAZL. Overall, the patterns of markers expression suggest that PB-MSCs and SSCs activate different signaling pathways after exposure to SCs/CM and during differentiation into GCs.

16.
Methods Mol Biol ; 2770: 113-121, 2024.
Article in English | MEDLINE | ID: mdl-38351450

ABSTRACT

Spermatogonial stem cells (SSCs) produce haploid sperm via mitosis and meiosis in vivo. Although the technique to culture mouse SSCs has been well established, induction of meiosis in vitro has remained a challenge. Retinoic acid (RA) is required for meiosis in vivo; however, RA alone is not sufficient to induce meiosis in vitro. Here, we describe a method in which nutrient restriction and RA synergistically induce meiotic initiation into meiotic prophase I in cultured mouse SSCs.


Subject(s)
Meiosis , Retinoids , Male , Mice , Animals , Semen , Tretinoin/pharmacology , Stem Cells , Nutrients , Spermatogonia , Spermatogenesis , Cell Differentiation
17.
Hum Reprod ; 39(5): 892-901, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38365879

ABSTRACT

STUDY QUESTION: Are there subgroups among patients with cryptozoospermia pointing to distinct etiologies? SUMMARY ANSWER: We reveal two distinct subgroups of cryptozoospermic (Crypto) patients based on testicular tissue composition, testicular volume, and FSH levels. WHAT IS KNOWN ALREADY: Cryptozoospermic patients present with a sperm concentration below 0.1 million/ml. While the etiology of the severely impaired spermatogenesis remains largely unknown, alterations of the spermatogonial compartment have been reported including a reduction of the reserve stem cells in these patients. STUDY DESIGN, SIZE, DURATION: To assess whether there are distinct subgroups among cryptozoospermic patients, we applied the statistical method of cluster analysis. For this, we retrospectively selected 132 cryptozoospermic patients from a clinical database who underwent a testicular biopsy in the frame of fertility treatment at a university hospital. As controls (Control), we selected 160 patients with obstructive azoospermia and full spermatogenesis. All 292 patients underwent routine evaluation for endocrine, semen, and histological parameters (i.e. the percentage of tubules with elongated spermatids). Moreover, outcome of medically assisted reproduction (MAR) was assessed for cryptozoospermic (n = 73) and Control patients (n = 87), respectively. For in-depth immunohistochemical and histomorphometrical analyses, representative tissue samples from cryptozoospermic (n = 27) and Control patients (n = 12) were selected based on cluster analysis results and histological parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included two parts: firstly using clinical parameters of the entire cohort of 292 patients, we performed principal component analysis (PCA) followed by hierarchical clustering on principal components (i.e. considering hormonal values, ejaculate parameters, and histological information). Secondly, for histological analyses seminiferous tubules were categorized according to the most advanced germ cell type present in sections stained with Periodic acid Schif. On the selected cohort of 39 patients (12 Control, 27 cryptozoospermic), we performed immunohistochemistry for spermatogonial markers melanoma-associated antigen 4 (MAGEA4) and piwi like RNA-mediated gene silencing 4 (PIWIL4) followed by quantitative analyses. Moreover, the morphologically defined Adark spermatogonia, which are considered to be the reserve stem cells, were quantified. MAIN RESULTS AND THE ROLE OF CHANCE: The PCA and hierarchical clustering revealed three different clusters, one of them containing all Control samples. The main factors driving the sorting of patients to the clusters were the percentage of tubules with elongated spermatids (Cluster 1, all Control patients and two cryptozoospermic patients), the percentage of tubules with spermatocytes (Cluster 2, cryptozoospermic patients), and tubules showing a Sertoli cells only phenotype (Cluster 3, cryptozoospermic patients). Importantly, the percentage of tubules containing elongated spermatids was comparable between Clusters 2 and 3. Additional differences were higher FSH levels (P < 0.001) and lower testicular volumes (P < 0.001) in Cluster 3 compared to Cluster 2. In the spermatogonial compartment of both cryptozoospermic Clusters, we found lower numbers of MAGEA4+ and Adark spermatogonia but higher proportions of PIWIL4+ spermatogonia, which were significantly correlated with a lower percentage of tubules containing elongated spermatids. In line with this common alteration, the outcome of MAR was comparable between Controls as well as both cryptozoospermic Clusters. LIMITATIONS, REASONS FOR CAUTION: While we have uncovered the existence of subgroups within the cohort of cryptozoospermic patients, comprehensive genetic analyses remain to be performed to unravel potentially distinct etiologies. WIDER IMPLICATIONS OF THE FINDINGS: The novel insight that cryptozoospermic patients can be divided into two subgroups will facilitate the strategic search for underlying genetic etiologies. Moreover, the shared alterations of the spermatogonial stem cell compartment between the two cryptozoospermic subgroups could represent a general response mechanism to the reduced output of sperm, which may be associated with a progressive phenotype. This study therefore offers novel approaches towards the understanding of the etiology underlying the reduced sperm formation in cryptozoospermic patients. STUDY FUNDING/COMPETING INTEREST(S): German research foundation CRU 326 (grants to: SDP, NN). Moreover, we thank the Faculty of Medicine of the University of Münster for the financial support of Lena Charlotte Schülke through the MedK-program. We acknowledge support from the Open Access Publication Fund of the University of Münster. The authors have no potential conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Follicle Stimulating Hormone , Spermatogenesis , Testis , Humans , Male , Adult , Retrospective Studies , Testis/pathology , Follicle Stimulating Hormone/blood , Azoospermia/pathology , Sperm Count , Spermatozoa/pathology , Cluster Analysis , Oligospermia/pathology , Infertility, Male/pathology , Infertility, Male/etiology
18.
J Pers Med ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392569

ABSTRACT

Infertility is a condition defined by the failure to establish a clinical pregnancy after 12 months of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. The authors have set out to succinctly investigate, explore, and assess infertility treatments, harnessing the potential of stem cells to effectively and safely treat infertility; in addition, this paper will present the legal and regulatory complexities at the heart of stem cell research, with an overview of the legislative state of affairs in six major European countries. For couples who cannot benefit from assisted reproductive technologies (ART) to treat their infertility, stem-cells-based approaches have been shown to be a highly promising approach. Nonetheless, lingering ethical and immunological uncertainties require more conclusive findings and data before such treatment avenues can become mainstream and be applied on a large scale. The isolation of human embryonic stem cells (ESCs) is ethically controversial, since their collection involves the destruction of human embryonic tissue. Overall, stem cell research has resulted in important new breakthroughs in the treatment of infertility. The effort to untangle the complex web of ethical and legal issues associated with such therapeutic approaches will have to rely on evidence-based, broadly shared standards, guidelines, and best practices to make sure that the procreative rights of patients can be effectively reconciled with the core values at the heart of medical ethics.

19.
Anim Reprod ; 21(1): e20230121, 2024.
Article in English | MEDLINE | ID: mdl-38384725

ABSTRACT

Germ cell transplantation in fish is a promising technique for surrogate broodstock parents with broader application in aquaculture and conserving endangered and valuable genetic resources. Herein, we describe the establishment of an intrapapillary xenogeneic transplant of germ cells from sexually mature goldfish (C. auratus) males into common carp (C. carpio) males cytoablated with a thermochemical treatment (two doses of busulfan at 40 mg/kg at 35°C). To analyze the presence and development of donor germ cells in recipient testes, donor germ cells were labeled with PKH26, a fluorescent cell membrane dye, before transplantation. Our results demonstrated that thermochemical treatment caused effective spermatogenesis suppression and pronounced germ cell loss. Moreover, transplanted spermatogonial cells were able to colonize the recipients' testes, resume spermatogenesis, and generate spermatozoa within eight weeks after germ cell transplantation. These findings suggested that recipient testes provided suitable conditions for the survival, colonization, proliferation, and differentiation of donor spermatogonia from a related species. This study indicated that recipients' testes exhibited a high degree of plasticity to accept and support xenogeneic donor germ cells, which were able to form sperm in a short time frame. This approach has significant implications for assisted animal reproduction, biotechnology, conservation, and the production of valuable genetic resources and endangered fish species.

20.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396838

ABSTRACT

Spermatogenesis is the process of proliferation and differentiation of spermatogonial cells to meiotic and post-meiotic stages and sperm generation. Normal spermatogenesis occurs in vivo at 34 °C to 35 °C, and high temperatures are known to cause male infertility. The aim of the present study was to examine the effect of temperature (35 °C compared to 37 °C) on the viability/apoptosis of developed cells, on the development of different stages of spermatogenesis in 3D in vitro culture conditions, and the functionality of Sertoli cells under these conditions. We used isolated cells from seminiferous tubules of sexually immature mice. The cells were cultured in methylcellulose (as a three-dimensional (3D) in vitro culture system) and incubated in a CO2 incubator at 35 °C or 37 °C. After two to six weeks, the developed cells and organoids were collected and examined for cell viability and apoptosis markers. The development of different stages of spermatogenesis was evaluated by immunofluorescence staining or qPCR analysis using specific antibodies or primers, respectively, for cells at each stage. Factors that indicate the functionality of Sertoli cells were assessed by qPCR analysis. The developed organoids were examined by a confocal microscope. Our results show that the percentages and/or the expression levels of the developed pre-meiotic, meiotic, and post-meiotic cells were significantly higher at 35 °C compared to those at 37 °C, including the expression levels of the androgen receptor, the FSH receptor, transferrin, the androgen-binding protein (ABP), and the glial-derived nerve growth factor (GDNF) which were similarly significantly higher at 35 °C than at 37 °C. The percentages of apoptotic cells (according to acridine orange staining) and the expression levels of BAX, FAS, and CASPAS 3 were significantly higher in cultures incubated at 37 °C compared to those incubated at 35 °C. These findings support the in vivo results regarding the negative effect of high temperatures on the process of spermatogenesis and suggest a possible effect of high temperatures on the viability/apoptosis of spermatogenic cells. In addition, increasing the temperature in vitro also impaired the functionality of Sertoli cells. These findings may deepen our understanding of the mechanisms behind optimal conditions for normal spermatogenesis in vivo and in vitro.


Subject(s)
Sertoli Cells , Testis , Male , Mice , Animals , Sertoli Cells/metabolism , Testis/metabolism , Temperature , Semen , Spermatogenesis , Spermatogonia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...