ABSTRACT
Glioblastoma (GBM) aggressiveness is partly driven by the reactivation of signaling pathways such as Sonic hedgehog (SHH) and the interaction with its microenvironment. SHH pathway activation is one of the phenomena behind the glial transformation in response to tumor growth. The reactivation of the SHH signaling cascade during GBM-astrocyte interaction is highly relevant to understanding the mechanisms used by the tumor to modulate the adjacent stroma. The role of reactive astrocytes considering SHH signaling during GBM progression is investigated using a 3D in vitro model. T98G GBM spheroids displayed significant downregulation of SHH (61.4 ± 9.3%), GLI-1 (6.5 ± 3.7%), Ki-67 (33.7 ± 8.1%), and mutant MTp53 (21.3 ± 10.6%) compared to the CONTROL group when incubated with conditioned medium of reactive astrocytes (CM-AST). The SHH pathway inhibitor, GANT-61, significantly reduced previous markers (SHH = 43.0 ± 12.1%; GLI-1 = 9.5 ± 3.4%; Ki-67 = 31.9 ± 4.6%; MTp53 = 6.5 ± 7.5%) compared to the CONTROL, and a synergistic effect could be observed between GANT-61 and CM-AST. The volume (2.0 ± 0.2 × 107 µm³), cell viability (80.4 ± 3.2%), and migration (41 ± 10%) of GBM spheroids were significantly reduced in the presence of GANT-61 and CM-AST when compared to CM-AST after 72 h (volume = 2.3 ± 0.4 × 107 µm³; viability = 92.2 ± 6.5%; migration = 102.5 ± 14.6%). Results demonstrated that factors released by reactive astrocytes promoted a neuroprotective effect preventing GBM progression using a 3D in vitro model potentiated by SHH pathway inhibition.
Subject(s)
Astrocytes , Cell Movement , Cell Proliferation , Glioblastoma , Spheroids, Cellular , Tumor Suppressor Protein p53 , Zinc Finger Protein GLI1 , Humans , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Astrocytes/metabolism , Culture Media, Conditioned/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Spheroids, Cellular/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Down-Regulation , Cell Line, Tumor , Pyridines/pharmacology , Gene Expression Regulation, Neoplastic , Signal Transduction , Mutation , Pyrimidines/pharmacologyABSTRACT
Cell spheroids are an important three-dimensional (3D) model for in vitro testing and are gaining interest for their use in clinical applications. More natural 3D cell culture environments that support cell-cell interactions have been created for cancer drug discovery and therapy applications, such as the scaffold-free 3D Petri Dish® technology. This technology uses reusable and autoclavable silicone micro-molds with different topographies, and it conventionally uses gelled agarose for hydrogel formation to preserve the topography of the selected micro-mold. The present study investigated the feasibility of using a patterned Poly(vinyl alcohol) hydrogel using the circular topography 12-81 (9 × 9 wells) micro-mold to form HeLa cancer cell spheroids and compare them with the formed spheroids using agarose hydrogels. PVA hydrogels showed a slightly softer, springier, and stickier texture than agarose hydrogels. After preparation, Fourier transform infrared (FTIR) spectra showed chemical interactions through hydrogen bonding in the PVA and agarose hydrogels. Both types of hydrogels favor the formation of large HeLa spheroids with an average diameter of around 700-800 µm after 72 h. However, the PVA spheroids are more compact than those from agarose, suggesting a potential influence of micro-mold surface chemistry on cell behavior and spheroid formation. This was additionally confirmed by evaluating the spheroid size, morphology, integrity, as well as E-cadherin and Ki67 expression. The results suggest that PVA promotes stronger cell-to-cell interactions in the spheroids. Even the integrity of PVA spheroids was maintained after exposure to the drug cisplatin. In conclusion, the patterned PVA hydrogels were successfully prepared using the 3D Petri Dish® micro-molds, and they could be used as suitable platforms for studying cell-cell interactions in cancer drug therapy.
ABSTRACT
Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
ABSTRACT
A three-dimensional (3D) cell culture can more precisely mimic tissues architecture and functionality, being a promising alternative model to study disease pathophysiology and drug screening. Chagas disease (CD) is a neglected parasitosis that affects 7 million people worldwide. Trypanosoma cruzi's (T. cruzi) mechanisms of invasion/persistence continue to be elucidated. Benznidazole (BZ) and Nifurtimox (NF) are trypanocidal drugs with few effects on the clinical manifestations of the chronic disease. Chronic Chagas cardiomyopathy (CCC) is the main manifestation of CD due to its frequency and severity. The development of fibrosis and hypertrophy in cardiac tissue can lead to heart failure and sudden death. Thus, there is an urgent need for novel therapeutic options. Our group has more than fifteen years of expertise using 3D primary cardiac cell cultures, being the first to reproduce fibrosis and hypertrophy induced by T. cruzi infection in vitro. These primary cardiac spheroids exhibit morphological and functional characteristics that are similar to heart tissue, making them an interesting model for studying CD cardiac fibrosis. Here, we aim to demonstrate that our primary cardiac spheroids are great preclinical models which can be used to develop new insights into CD cardiac fibrosis, presenting advances already achieved in the field, including disease modeling and drug screening.
ABSTRACT
PURPOSE: The insulin-like growth factor (IGF) system includes IGF-I, IGF-II insulin and their membrane receptors. IGF system also includes a family of proteins namely insulin-like growth factor-binding proteins (IGFBPs) composed for six major members (IGFBP-1 to IGFBP6), which capture, transport and prolonging half-life of IGFs. However, it has been described that IGFBPs can also have other functions. METHODS: IGFBP5 expression was inhibited by shRNAs, migration was analyzed by scratch-wound assays, invasion assays were performed by the Boyden chamber method, spheroids formation assays were performed on ultra-low attachment surfaces, expression and phosphorylation of proteins were analyzed by Western blot. RESULTS: IGFBP5 is a repressor of IGF-IR expression, but it is not a repressor of IR in MCF-7 breast cancer cells. In addition, IGFBP5 is a suppressor of migration and MMP-9 secretion induced by IGF-I and insulin, but it does not regulate invasion in MCF-7 cells. IGFBP5 also is a repressor of MCF-7 spheroids formation. However treatment with 340 nM rescues the inhibitory effect of IGFBP in the MCF-7 spheroids formation. CONCLUSION: IGFBP5 regulates IGF-IR expression, migration and MMP-9 secretion induced by IGF-I and/or insulin, and the spheroids formation in MCF-7 breast cancer cells.
Subject(s)
Breast Neoplasms , Cell Movement , Insulin-Like Growth Factor Binding Protein 5 , Insulin-Like Growth Factor I , Insulin , Neoplasm Invasiveness , Spheroids, Cellular , Humans , Insulin-Like Growth Factor Binding Protein 5/metabolism , Insulin-Like Growth Factor Binding Protein 5/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , MCF-7 Cells , Insulin/metabolism , Female , Matrix Metalloproteinase 9/metabolism , Receptor, IGF Type 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , PhosphorylationABSTRACT
3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches. This protocol is particularly timely, as it validates magnetic bioprinting as a method for the rapid deployment of 3D cultures as a tool for compound screening and development of heterotypic cultures such as co-culture of oral squamous cell carcinoma cells with cancer-associated fibroblasts (HSC3/CAFs).
Subject(s)
Bioprinting , Carcinoma, Squamous Cell , Coculture Techniques , Mouth Neoplasms , Printing, Three-Dimensional , Spheroids, Cellular , Humans , Mouth Neoplasms/pathology , Bioprinting/methods , Cell Line, Tumor , Carcinoma, Squamous Cell/pathology , Coculture Techniques/methods , Spheroids, Cellular/pathology , Cell Culture Techniques, Three Dimensional/methodsABSTRACT
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Animals , Carcinogenesis/pathology , Carcinogenesis/genetics , Organoids/pathology , Models, BiologicalABSTRACT
In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.
ABSTRACT
Leukodystrophies represent a large and complex group of inherited disorders affecting the white matter of the central nervous system. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare leukodystrophy which still needs the proper identification of diagnostic, prognostic, and monitoring biomarkers. The aim of this study was to determine the diagnostic and prognostic value of chitinases and neurofilament light chain as biomarkers for ALSP. A cross-sectional study was performed to analyze cerebrospinal fluid levels of chitinases (chitotriosidase and chitinase 3-like 2) and neurofilament light chain in five different groups: (i) normal health individuals; (ii) patients with definitive diagnosis of ALSP and genetic confirmation; (iii) asymptomatic patients with CSF1R variants; (iv) patients with other adult-onset leukodystrophies; and (v) patients with amyotrophic lateral sclerosis (external control group). Chitinase levels showed a statistical correlation with clinical assessment parameters in ALSP patients. Chitinase levels were also distinct between ALSP and the other leukodystrophies. Significant differences were noted in the levels of chitinases and neurofilament light chain comparing symptomatic (ALSP) and asymptomatic individuals with CSF1R variants. This study is the first to establish chitinases as a potential biomarker for ALSP and confirms neurofilament light chain as a good biomarker for primary microgliopathies.
ABSTRACT
Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.
Subject(s)
DNA-Directed DNA Polymerase , Drug Resistance, Neoplasm , Glioblastoma , Spheroids, Cellular , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/enzymology , Temozolomide/pharmacology , Drug Resistance, Neoplasm/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/enzymology , Antineoplastic Agents, Alkylating/pharmacologyABSTRACT
BACKGROUND: The SARS-CoV-2 pandemic has spurred an unparalleled scientific endeavor to elucidate the virus' structure, infection mechanisms, and pathogenesis. Two-dimensional culture systems have been instrumental in shedding light on numerous aspects of COVID-19. However, these in vitro systems lack the physiological complexity to comprehend the infection process and explore treatment options. Three-dimensional (3D) models have been proposed to fill the gap between 2D cultures and in vivo studies. Specifically, spheroids, composed of lung cell types, have been suggested for studying SARS-CoV-2 infection and serving as a drug screening platform. METHODS: 3D lung spheroids were prepared by coculturing human alveolar or bronchial epithelial cells with human lung stromal cells. The morphology, size, and ultrastructure of spheroids before and after SARS-CoV-2 infection were analyzed using optical and electron microscopy. Immunohistochemistry was used to detect spike protein and, thus, the virus presence in the spheroids. Multiplex analysis elucidated the cytokine release after virus infection. RESULTS: The spheroids were stable and kept their size and morphology after SARS-CoV-2 infection despite the presence of multivesicular bodies, endoplasmic reticulum rearrangement, tubular compartment-enclosed vesicles, and the accumulation of viral particles. The spheroid responded to the infection releasing IL-6 and IL-8 cytokines. CONCLUSION: This study demonstrates that coculture spheroids of epithelial and stromal cells can serve as a cost-effective infection model for the SARS-CoV-2 virus. We suggest using this 3D spheroid as a drug screening platform to explore new treatments related to the cytokines released during virus infection, especially for long COVID treatment.
Subject(s)
COVID-19 , Drug Evaluation, Preclinical , Lung , SARS-CoV-2 , Spheroids, Cellular , Humans , Spheroids, Cellular/virology , COVID-19/virology , SARS-CoV-2/physiology , Lung/virology , Lung/pathology , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coculture Techniques , Cytokines/metabolism , Cost-Benefit Analysis , Epithelial Cells/virologyABSTRACT
Despite being a leading cause of acquired seizures in endemic regions, the pathological mechanisms of neurocysticercosis are still poorly understood. This study aims to investigate the impact of anthelmintic treatment on neuropathological features in a rat model of neurocysticercosis. Rats were intracranially infected with Taenia solium oncospheres and treated with albendazole + praziquantel (ABZ), oxfendazole + praziquantel (OXF), or untreated placebo (UT) for 7 days. Following the last dose of treatment, brain tissues were evaluated at 24 h and 2 months. We performed neuropathological assessment for cyst damage, perilesional brain inflammation, presence of axonal spheroids, and spongy changes. Both treatments showed comparable efficacy in cyst damage and inflammation. The presence of spongy change correlated with spheroids counts and were not affected by anthelmintic treatment. Compared to white matter, gray matter showed greater spongy change (91.7% vs. 21.4%, p < 0.0001), higher spheroids count (45.2 vs. 0.2, p = 0.0001), and increased inflammation (72.0% vs. 21.4%, p = 0.003). In this rat model, anthelmintic treatment destroyed brain parasitic cysts at the cost of local inflammation similar to what is described in human neurocysticercosis. Axonal spheroids and spongy changes as markers of damage were topographically correlated, and not affected by anthelmintic treatment.
Subject(s)
Anthelmintics , Brain , Neurocysticercosis , Taenia solium , Animals , Neurocysticercosis/drug therapy , Neurocysticercosis/pathology , Rats , Anthelmintics/therapeutic use , Brain/pathology , Brain/parasitology , Albendazole/therapeutic use , Albendazole/pharmacology , Praziquantel/therapeutic use , Disease Models, Animal , Male , Female , BenzimidazolesABSTRACT
Three-dimensional (3D) bioprinting, a promising advancement in tissue engineering technology, involves the robotic, layer-by-layer additive biofabrication of functional 3D tissue and organ constructs. This process utilizes biomaterials, typically hydrogels and living cells, following digital models. Traditional tissue engineering uses a classic triad of living cells, scaffolds, and physicochemical signals in bioreactors. A scaffold is a temporary, often biodegradable, support structure. Tissue engineering primarily falls into two categories: (i) scaffold based and (ii) scaffold free. The latter, scaffold-free 3D bioprinting, is gaining increasing popularity. Organ building blocks (OBB), capable of self-assembly and self-organization, such as tissue spheroids, organoids, and assembloids, have begun to be utilized in scaffold-free bioprinting. This article discusses the expanding range of OBB, presents the rapidly evolving collection of bioprinting and bioassembly methods using these OBB, and finally, outlines the advantages, challenges, and future perspectives of using OBB in organ printing.
ABSTRACT
Docetaxel (DTX) is one of the chemotherapeutic drugs indicated as a first-line treatment against metastatic prostate cancer (mPCa). This study aimed to compare the impact of DTX on mPCa (DU-145) tumor cells cultured as 2D monolayers and 3D multicellular tumor spheroids (MCTS) in vitro. The cells were treated with DTX (1-96 µM) at 24, 48, or 72 hr in cell viability assays (resazurin, phosphatase acid, and lactate dehydrogenase). Cell death was assessed with fluorescent markers and proliferation by clonogenic assay (2D) and morphology, volume, and integrity assay (3D). The cell invasion was determined using transwell (2D) and extracellular matrix (ECM) (3D). Results showed that DTX decreased cell viability in both culture models. In 2D, the IC50 (72 hr) values were 11.06 µM and 14.23 µM for resazurin and phosphatase assays, respectively. In MCTS, the IC50 values for the same assays were 114.9 µM and 163.7 µM, approximately 10-fold higher than in the 2D model. The % of viable cells decreased, while the apoptotic cell number was elevated compared to the control in 2D. In 3D spheroids, only DTX 24 µM induced apoptosis. DTX (≥24 µM at 216 hr) lowered the volume, and DTX 96 µM completely disintegrated the MCTS. DTX reduced the invasion of mPCa cells to matrigel (2D) and migration from MCTS to the ECM. Data demonstrated significant differences in drug response between 2D and 3D cell culture models using mPCa DU-145 tumor cells. MCTS resembles the early stages of solid tumors in vivo and needs to be considered in conjunction with 2D cultures when searching for new therapeutic targets.
Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Prostate , Cell Line, Tumor , Spheroids, Cellular , Prostatic Neoplasms/drug therapy , Phosphoric Monoester Hydrolases/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic useABSTRACT
Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.
ABSTRACT
The study of 3D cell culture has increased in recent years as a model that mimics the tumor microenvironment (TME), which is characterized by exhibiting cellular heterogeneity, allowing the modulation of different signaling pathways that enrich this microenvironment. The TME exhibits two main cell populations: cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). The aim of this study was to investigate 3D cell cultures of non-small cell lung cancer (NSCLC) alone and in combination with short-term cultured dermal fibroblasts (FDH) and with differentiated macrophages of the THP-1 cell line. Homotypic and heterotypic spheroids were morphologically characterized using light microscopy, immunofluorescence and transmission electron microscopy. Cell viability, cycle profiling and migration assay were performed, followed by the evaluation of the effects of some chemotherapeutic and potential compounds on homotypic and heterotypic spheroids. Both homotypic and heterotypic spheroids of NSCLC were generated with fibroblasts or macrophages. Heterotypic spheroids with fibroblast formed faster, while homotypic ones reached larger sizes. Different cell populations were identified based on spheroid zoning, and drug effects varied between spheroid types. Interestingly, heterotypic spheroids with fibroblasts showed similar responses to the treatment with different compounds, despite being smaller. Cellular viability analysis required multiple methods, since the responses varied depending on the spheroid type. Because of this, the complexity of the spheroid should be considered when analyzing compound effects. Overall, this study contributes to our understanding of the behavior and response of NSCLC cells in 3D microenvironments, providing valuable insights for future research and therapeutic development.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Spheroids, Cellular , Coculture Techniques , Tumor Microenvironment , Lung Neoplasms/pathology , Macrophages , Cell Culture Techniques , Fibroblasts/metabolismABSTRACT
Abstract Introduction: The therapeutic benefits of the brown algae fucoidan in the treatment of breast cancer have attracted considerable interest in recent years. However, research using spheroids which provide relevant results in trials for antitumor and immunomodulatory products because they adequately simulate the tumor microenvironment, is limited. Objective: To evaluate the antitumor and immunomodulatory activity of Lessonia trabeculata fucoidan (LtF), native to the Peruvian Sea, on two types of multicellular tumor spheroids. Methods: The study was conducted from January to December 2021. Two types of spheroides were elaborated: from 4T1 tumor cells (MTS), and from 4T1 tumor cells+mouse splenocytes (MTSs). The antitumor activity of LtF was evaluated in MTS by quantifying cell viability with MTT. Immunomodulatory activity was determined in MTSs using the IC50 for two types of treatment: simple, fucoidan alone (LtF) and combined, fucoidan+doxorubicin (LtF+Dox). Pro-inflammatory (TNF-α, IL-6) and anti-inflammatory (IL-10, TGF-β) cytokine production was quantified by sandwich ELISA 72 h after treatment. Dox was used as positive control in all assays. Results: LtF exerted antitumor activity as evidenced by increased necrotic zone and cell debris formation compared to the untreated control. Antitumor activity was concentration dependent between 100 and 6 000 μg/ml. In MTSs, simple treatment increased IL-6 and decreased IL-10 and TGF-β production. The combined treatment significantly reduced TGF-β production. In both treatments and Dox, there was an increase in IL-6 compared to the untreated control. The highest production of IL-10 and TGF-β was observed in the untreated control, compatible with a highly immunosuppressive tumor microenvironment. Conclusions: LtF is a good candidate for the treatment of breast cancer and can immunomodulate the tumor microenvironment alone or in combination with Dox.
Resumen Introduccción: Los beneficios terapéuticos del fucoidan de algas pardas en el tratamiento del cáncer de mama han despertado gran interés en los últimos años. Sin embargo, las investigaciones con esferoides son limitadas, éstos proporcionan resultados relevantes en ensayos de productos antitumorales e inmunomoduladores porque simulan adecuadamente el microambiente tumoral. Objetivo: Evaluar la actividad antitumoral e inmunomoduladora del fucoidan de Lessonia trabeculata (LtF), nativa del Mar Peruano, en dos tipos de esferoides tumorales multicelulares. Métodos: El estudio se realizó de enero a diciembre de 2021. Se elaboraron dos tipos de esferoides: con células tumorales 4T1 (MTS) y con células tumorales 4T1+esplenocitos de ratón (MTSs). La actividad antitumoral de LtF se evaluó en MTS cuantificando la viabilidad celular con MTT. La inmunomodulación se determinó en MTSs utilizando la IC50 para dos tipos de tratamiento: simple, fucoidan solo (LtF) y combinado, fucoidan+doxorubicina (LtF+Dox). La producción de citoquinas proinflamatorias (TNF-α, IL-6) y antiinflamatorias (IL-10, TGF-β) se cuantificó mediante ELISA sándwich 72 h post-tratamiento. En todos los ensayos se utilizó Dox como control positivo. Resultados: En los MTS, el LtF ejerció actividad antitumoral evidenciada por aumento de la zona necrótica y formación de restos celulares respecto al control no tratado. La actividad antitumoral fue concentración-dependiente entre 100 y 6 000 μg/ml. En los MTSs, con el tratamiento simple se incrementó IL-6 y disminuyeron IL-10 y TGF-β. El tratamiento combinado redujo significativamente la producción de TGF-β. Los dos tratamientos y Dox incrementaron IL-6 respecto al control no tratado. La mayor producción de IL-10 y TGF-β se observó en los no tratados, compatible con un microambiente tumoral altamente inmunosupresor. Conclusiones: El LtF es un buen candidato para tratar el cáncer de mama y puede inmunomodular el microambiente tumoral solo o en combinación con Dox.
Subject(s)
Animals , Spheroids, Cellular , Phaeophyceae , Antineoplastic Agents/therapeutic use , PeruABSTRACT
Background: Adipose tissue engineering may provide 3D models for the understanding of diseases such as obesity and type II diabetes. Recently, distinct adipose stem/stromal cell (ASC) subpopulations were identified from subcutaneous adipose tissue (SAT): superficial (sSAT), deep (dSAT), and the superficial retinacula cutis (sRC). This study aimed to test these subpopulations ASCs in 3D spheroid culture induced for adipogenesis under a pro-inflammatory stimulus with lipopolysaccharide (LPS). Methods: The samples of abdominal human subcutaneous adipose tissue were obtained during plastic aesthetic surgery (Protocol 145/09). Results: ASC spheroids showed high response to adipogenic induction in sSAT. All ASC spheroids increased their capacity to lipolysis under LPS. However, spheroids from dSAT were higher than from sSAT (p = 0.0045) and sRC (p = 0.0005). Newly formed spheroids and spheroids under LPS stimulus from sSAT showed the highest levels of fatty acid-binding protein 4 (FABP4) and CCAAT/enhancer-binding protein-α (C/EBPα) mRNA expression compared with dSAT and sRC (p < 0.0001). ASC spheroids from sRC showed the highest synthesis of angiogenic cytokines such as vascular endothelial growth factor (VEGF) compared with dSAT (p < 0.0228). Under LPS stimulus, ASC spheroids from sRC showed the highest synthesis of pro-inflammatory cytokines such as IL-6 compared with dSAT (p < 0.0092). Conclusion: Distinct physiological properties of SAT can be recapitulated in ASC spheroids. In summary, the ASC spheroid from dSAT showed the greatest lipolytic capacity, from sSAT the greatest adipogenic induction, and sRC showed greater secretory capacity when compared to the dSAT. Together, all these capacities form a true mimicry of SAT and hold the potential to contribute for a deeper understanding of cellular and molecular mechanisms in healthy and unhealthy adipose tissue scenarios or in response to pharmacological interventions.
ABSTRACT
Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.