Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Toxins (Basel) ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38922129

ABSTRACT

Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.


Subject(s)
Insecticides , Polyamines , Spider Venoms , Wasps , Animals , Polyamines/chemistry , Spider Venoms/chemistry , Spider Venoms/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/toxicity , Humans , Spiders
2.
Toxins (Basel) ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38922134

ABSTRACT

Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders.


Subject(s)
Evolution, Molecular , Spider Venoms , Spiders , Spider Venoms/genetics , Spider Venoms/chemistry , Animals , Spiders/genetics , Phylogeny , Transcriptome , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Amino Acid Sequence
3.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879311

ABSTRACT

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Subject(s)
Peptides , Spider Venoms , Animals , Spider Venoms/chemistry , Spider Venoms/genetics , Peptides/pharmacology , Peptides/chemistry , Mites/drug effects , Spodoptera/drug effects , Tetranychidae/drug effects , Tetranychidae/genetics , Pest Control, Biological/methods , Amino Acid Sequence , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/chemistry , Predatory Behavior/drug effects
4.
J Pept Sci ; : e3600, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623834

ABSTRACT

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.

5.
In Silico Pharmacol ; 12(1): 15, 2024.
Article in English | MEDLINE | ID: mdl-38476933

ABSTRACT

The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 µM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to - 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (- 7.0 score) has greater affinity for the receptor than the N terminus (- 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of - 214,890.21 kJ/mol, whereas with rigid docking, this value was - 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00190-8.

6.
Methods Mol Biol ; 2758: 331-340, 2024.
Article in English | MEDLINE | ID: mdl-38549023

ABSTRACT

Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter, we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.


Subject(s)
Spider Venoms , Spiders , Animals , Tandem Mass Spectrometry , Spider Venoms/chemistry , Peptides/chemistry , Amino Acid Sequence , Disulfides/analysis , Spiders/metabolism
7.
J Emerg Med ; 66(4): e467-e469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462393

ABSTRACT

BACKGROUND: Literature on systemic envenomation caused by tarantula bites, particularly from the Theraphosidae family, is relatively scarce. This case report provides a formal description of the first known instance of systemic envenomation caused by the Socotra Island Blue Baboon Tarantula (Monocentropus balfouri). CASE REPORT: In this case, a 23-year-old employee of an exotic pet shop suffered from perioral paresthesia, generalized muscle cramps, and rhabdomyolysis because of a Monocentropus balfouri bite. His symptoms were successfully relieved with oral benzodiazepines. EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case highlights the potential for serious complications resulting from the bite of Monocentropus balfouri, a species gaining popularity among global exotic pet collectors.


Subject(s)
Rhabdomyolysis , Spider Bites , Spiders , Animals , Humans , Young Adult , Adult , Muscle Cramp , Spider Bites/complications , Paresthesia/etiology , Spasm , Rhabdomyolysis/complications
8.
Arch Toxicol ; 98(5): 1561-1572, 2024 May.
Article in English | MEDLINE | ID: mdl-38498159

ABSTRACT

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.


Subject(s)
Sphingomyelin Phosphodiesterase , Spider Bites , Spider Venoms , Humans , Sphingomyelin Phosphodiesterase/therapeutic use , Phosphoric Diester Hydrolases/toxicity , Kidney , Cell Death
9.
Article in English | MEDLINE | ID: mdl-37952503

ABSTRACT

Spider venoms have evolved over thousands of years, optimizing feeding and defense mechanisms. Venom components show pharmacological and biotechnological potential, rising interest in their study. However, the isolation of spider toxins for experimental evaluation poses significant challenges. To address this, transcriptomic analysis combined with computational tools has emerged as an appealing approach to characterizing spider venoms. However, many sequences remain unidentified after automatic annotation. In this study, we manually curated a subset of previously unannotated sequences from the Phoneutria nigriventer transcriptome and identified new putative venom components. Our manual analysis revealed 29 % of the analyzed sequences were potential venom components, 29 % hypothetical/uncharacterized proteins, and 17 % cellular function proteins. Only 25 % of the originally unannotated dataset remained without any identification. Most reclassified components were cysteine-rich peptides, including 23 novel putative toxins. We also found glycine-rich peptides (GRP), corroborating the previous description of GRPs in Phoneutria pertyi venom glands. Furthermore, to emphasize the recurrence of the lack of annotation in spider venom glands transcripts, we provide a survey of the percentage of unidentified sequences in several published spider venom transcriptomics studies. In conclusion, our study highlights the importance of manual curation in uncovering novel venom components and underscores the need for improved annotation strategies to fully exploit the medical and biotechnological potential of spider venoms.


Subject(s)
Animals, Poisonous , Spider Venoms , Spiders , Transcriptome , Animals , Spider Venoms/genetics , Spider Venoms/chemistry , Peptides/chemistry , Gene Expression Profiling
10.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37818589

ABSTRACT

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Subject(s)
Glucagon , Hypoglycemic Agents , Mice , Animals , Exenatide , Glucagon/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood Glucose/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Insulin/metabolism , Venoms/pharmacology , Venoms/therapeutic use , Glucose , Body Weight
11.
Arch Toxicol, v. 98, p. 1561-1572, 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5299

ABSTRACT

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.

12.
In Silico Pharmacol, v. 12, n. 15, mar. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5285

ABSTRACT

The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 μM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to – 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (– 7.0 score) has greater affinity for the receptor than the N terminus (– 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of – 214,890.21 kJ/mol, whereas with rigid docking, this value was – 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth.

13.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38136742

ABSTRACT

With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.

14.
Toxicon ; 235: 107308, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797725

ABSTRACT

Animal venoms are a promising source of potential bioinsecticides. To find hits with pronounced oral insect toxicity, we screened 82 venoms using Achroia grisella (Lepidoptera) and Tenebrio molitor (Coleoptera) larvae, and adult Drosophila melanogaster (Diptera). We also injected the most potent venoms in adult D. melanogaster to compare their efficiency in different routes of administration. 18 venoms from spiders and snakes show high oral toxicity and can be further exploited to isolate new insecticides.


Subject(s)
Insecticides , Spider Venoms , Animals , Venoms , Drosophila melanogaster , Spider Venoms/toxicity , Insecta , Insecticides/toxicity , Larva
15.
Front Microbiol ; 14: 1249175, 2023.
Article in English | MEDLINE | ID: mdl-37577428

ABSTRACT

As the emergence and prevalence of antibiotic-resistant strains have resulted in a global crisis, there is an urgent need for new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit inhibitory activity against a wide spectrum of pathogens and can be utilized as an alternative to conventional antibiotics. In this study, two novel AMPs were identified from the venom transcriptome of the spider Argiope bruennichi (Scopoli, 1772) using in silico methods, and their antimicrobial activity was experimentally validated. Aranetoxin-Ab2a (AATX-Ab2a) and Aranetoxin-Ab3a (AATX-Ab3a) were identified by homology analysis and were predicted to have high levels of antimicrobial activity based on in silico analysis. Both peptides were found to have antibacterial effect against Gram-positive and -negative strains, and, in particular, showed significant inhibitory activity against multidrug-resistant Pseudomonas aeruginosa isolates. In addition, AATX-Ab2a and AATX-Ab3a inhibited animal and vegetable fungal strains, while showing low toxicity to normal human cells. The antimicrobial activity of the peptides was attributed to the increased permeability of microbial membranes. The study described the discovery of novel antibiotic candidates, AATX-Ab2a and AATX-Ab3a, using the spider venom gland transcriptome, and validated an in silico-based method for identifying functional substances from biological resources.

16.
Article in English | MEDLINE | ID: mdl-37352672

ABSTRACT

The spiders Psechrus triangulus and Hippasa lycosina are widely distributed in Yunnan Province, China, and are important natural enemies of agricultural pests, yet studies regarding the composition of their venom are lacking. In this study, cDNA libraries were constructed from venom gland tissue of P. triangulus and H. lycosina and used for transcriptomic analysis. From the analysis, 39 and 31 toxin-like sequences were predicted for P. triangulus and H. lycosina, respectively. The predicted neurotoxin sequences were categorized according to cysteine sequence motifs, and the predicted neurotoxin sequences of P. triangulus and H. lycosina could be classified into 9 and 6 toxin families, respectively. In addition, potential acetylcholinesterase, hyaluronidase, and astaxanthin-like metalloproteinases were identified through annotation. In summary, transcriptomic techniques were invaluable in mining the gene expression information from these two spider species to explore the toxin composition of their venom and determine how they differ. Studies of this type provide essential baseline data for studying the evolution and physiological activities of spider toxins and for the potential development of medicinal compounds.


Subject(s)
Spider Venoms , Transcriptome , Animals , Neurotoxins , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , China , Spider Venoms/genetics , Spider Venoms/chemistry
17.
Protein Sci ; 32(7): e4701, 2023 07.
Article in English | MEDLINE | ID: mdl-37313620

ABSTRACT

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Subject(s)
Phospholipase D , Phospholipase D/genetics , Phospholipase D/chemistry , Phospholipase D/metabolism , Amino Acid Sequence , Phylogeny , Sequence Alignment , Catalytic Domain , Bacteria/metabolism
18.
Toxins (Basel) ; 15(5)2023 04 22.
Article in English | MEDLINE | ID: mdl-37235338

ABSTRACT

The venoms of spiders from the RTA (retro-lateral tibia apophysis) clade contain diverse short linear peptides (SLPs) that offer a rich source of therapeutic candidates. Many of these peptides have insecticidal, antimicrobial and/or cytolytic activities, but their biological functions are unclear. Here, we explore the bioactivity of all known members of the A-family of SLPs previously identified in the venom of the Chinese wolf spider (Lycosa shansia). Our broad approach included an in silico analysis of physicochemical properties and bioactivity profiling for cytotoxic, antiviral, insecticidal and antibacterial activities. We found that most members of the A-family can form α-helices and resemble the antibacterial peptides found in frog poison. The peptides we tested showed no cytotoxic, antiviral or insecticidal activities but were able to reduce the growth of bacteria, including clinically relevant strains of Staphylococcus epidermidis and Listeria monocytogenes. The absence of insecticidal activity may suggest that these peptides have no role in prey capture, but their antibacterial activity may help to defend the venom gland against infection.


Subject(s)
Insecticides , Spider Venoms , Spiders , Animals , Venoms , Peptides/pharmacology , Peptides/chemistry , Insecticides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spiders/chemistry , Spider Venoms/pharmacology , Spider Venoms/chemistry
19.
Curr Protein Pept Sci ; 24(5): 365-379, 2023.
Article in English | MEDLINE | ID: mdl-37018532

ABSTRACT

Ion channels play critical roles in generating and propagating action potentials and in neurotransmitter release at a subset of excitatory and inhibitory synapses. Dysfunction of these channels has been linked to various health conditions, such as neurodegenerative diseases and chronic pain. Neurodegeneration is one of the underlying causes of a range of neurological pathologies, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, brain injury, and retinal ischemia. Pain is a symptom that can serve as an index of the severity and activity of a disease condition, a prognostic indicator, and a criterion of treatment efficacy. Neurological disorders and pain are conditions that undeniably impact a patient's survival, health, and quality of life, with possible financial consequences. Venoms are the best-known natural source of ion channel modulators. Venom peptides are increasingly recognized as potential therapeutic tools due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. These include peptides that potently and selectively modulate a range of targets, such as enzymes, receptors, and ion channels. Thus, components of spider venoms hold considerable capacity as drug candidates for alleviating or reducing neurodegeneration and pain. This review aims to summarize what is known about spider toxins acting upon ion channels, providing neuroprotective and analgesic effects.


Subject(s)
Analgesia , Spider Venoms , Spiders , Animals , Spider Venoms/pharmacology , Neuroprotection , Quality of Life , Ion Channels , Peptides/pharmacology , Peptides/therapeutic use , Pain/drug therapy
20.
Front Mol Biosci ; 10: 1069764, 2023.
Article in English | MEDLINE | ID: mdl-36865382

ABSTRACT

Introduction: Spider venoms are a unique source of bioactive peptides, many of which display remarkable biological stability and neuroactivity. Phoneutria nigriventer, often referred to as the Brazilian wandering spider, banana spider or "armed" spider, is endemic to South America and amongst the most dangerous venomous spiders in the world. There are 4,000 envenomation accidents with P. nigriventer each year in Brazil, which can lead to symptoms including priapism, hypertension, blurred vision, sweating, and vomiting. In addition to its clinical relevance, P. nigriventer venom contains peptides that provide therapeutic effects in a range of disease models. Methods: In this study, we explored the neuroactivity and molecular diversity of P. nigriventer venom using fractionation-guided high-throughput cellular assays coupled to proteomics and multi-pharmacology activity to broaden the knowledge about this venom and its therapeutic potential and provide a proof-of-concept for an investigative pipeline to study spider-venom derived neuroactive peptides. We coupled proteomics with ion channel assays using a neuroblastoma cell line to identify venom compounds that modulate the activity of voltage-gated sodium and calcium channels, as well as the nicotinic acetylcholine receptor. Results: Our data revealed that P. nigriventer venom is highly complex compared to other neurotoxin-rich venoms and contains potent modulators of voltage-gated ion channels which were classified into four families of neuroactive peptides based on their activity and structures. In addition to the reported P. nigriventer neuroactive peptides, we identified at least 27 novel cysteine-rich venom peptides for which their activity and molecular target remains to be determined. Discussion: Our findings provide a platform for studying the bioactivity of known and novel neuroactive components in the venom of P. nigriventer and other spiders and suggest that our discovery pipeline can be used to identify ion channel-targeting venom peptides with potential as pharmacological tools and to drug leads.

SELECTION OF CITATIONS
SEARCH DETAIL
...