Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064853

ABSTRACT

Tetroxane derivatives are interesting drugs for antileishmaniasis and antimalaric treatments. The gas-phase thermal decomposition of 3,6,-dimethyl-1,2,4,5-tetroxane (DMT) and 3,3,6,6,-tetramethyl-1,2,4,5-tetroxane (acetone diperoxide (ACDP)) was studied at 493-543 K by direct gas chromatography by means of a flow reactor. The reaction is produced in the injector chamber at different temperatures. The resulting kinetics Arrhenius equations were calculated for both tetroxanes. Including the parent compound of the series 1,2,4,5-tetroxane (formaldehyde diperoxide (FDP)), the activation energy and frequency factors decrease linearly with the number of methyl groups. The reaction mechanisms of ACDP and 3,6,6-trimethyl-1,2,4,5-tetroxane (TMT) decomposition have been studied by means of the DFT method with the BHANDHLYP functional. Our calculations confirm that the concerted mechanism should be discarded and that only the stepwise mechanism occurs. The critical points of the singlet and triplet state potential energy surfaces (S- and T-PES) of the thermolysis reaction of both compounds have been determined. The calculated activation energies of the different steps vary linearly with the number of methyl groups of the methyl-tetroxanes series. The mechanism for the S-PES leads to a diradical O···O open structure, which leads to a C···O dissociation in the second step and the production of the first acetaldehyde/acetone molecule. This last one yields a second C···O dissociation, producing O2 and another acetone/acetaldehyde molecule. The O2 molecule is in the singlet state. A quasi-parallel mechanism for the T-PES from the open diradical to products is also found. Most of the critical points of both PES are linear with the number of methyl groups. Reaction in the triplet state is much more exothermic than the singlet state mechanism. Transitions from the singlet ground state, S0 and low-lying singlet states S1-3, to the low-lying triplet excited states, T1-4, (chemical excitation) in the family of methyl tetroxanes are also studied at the CASSCF/CASPT2 level. Two possible mechanisms are possible here: (i) from S0 to T3 by strong spin orbit coupling (SOC) and subsequent fast internal conversion to the excited T1 state and (ii) from S0 to S2 from internal conversion and subsequent S2 to T1 by SOC. From these experimental and theoretical results, the additivity effect of the methyl groups in the thermolysis reaction of the methyl tetroxane derivatives is clearly highlighted. This information will have a great impact for controlling these processes in the laboratory and chemical industries.

2.
Chemistry ; 30(26): e202304083, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38647352

ABSTRACT

Singlet dioxygen has been widely applied in different disciplines such as medicine (photodynamic therapy or blood sterilization), remediation (wastewater treatment) or industrial processes (fine chemicals synthesis). Particularly, it can be conveniently generated by energy transfer between a photosensitizer's triplet state and triplet dioxygen upon irradiation with visible light. Among the best photosensitizers, substituted zinc(II) phthalocyanines are prominent due to their excellent photophysical properties, which can be tuned by structural modifications, such as halogen- and chalcogen-atom substitution. These patterns allow for the enhancement of spin-orbit coupling, commonly attributed to the heavy atom effect, which correlates with the atomic number ( Z ${Z}$ ) and the spin-orbit coupling constant ( ζ ${\zeta }$ ) of the introduced heteroatom. Herein, a fully systematic analysis of the effect exerted by chalcogen atoms on the photophysical characteristics (absorption and fluorescence properties, lifetimes and singlet dioxygen photogeneration), involving 30 custom-made ß-tetrasubstituted chalcogen-bearing zinc(II) phthalocyanines is described and evaluated regarding the heavy atom effect. Besides, the intersystem crossing rate constants are estimated by several independent methods and a quantitative profile of the heavy atom is provided by using linear correlations between relative intersystem crossing rates and relative atomic numbers. Good linear trends for both intersystem crossing rates (S1-T1 and T1-S0) were obtained, with a dependency on the atomic number and the spin-orbit coupling constant scaling as Z 0 . 4 ${{Z}^{0.4}}$ and ζ 0 . 2 ${{\zeta }^{0.2}}$ , respectively The trend shows to be independent of the solvent and temperature.

3.
Entropy (Basel) ; 26(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38392392

ABSTRACT

This article presents a concise survey of basic discrete and semi-discrete nonlinear models, which produce two- and three-dimensional (2D and 3D) solitons, and a summary of the main theoretical and experimental results obtained for such solitons. The models are based on the discrete nonlinear Schrödinger (DNLS) equations and their generalizations, such as a system of discrete Gross-Pitaevskii (GP) equations with the Lee-Huang-Yang corrections, the 2D Salerno model (SM), DNLS equations with long-range dipole-dipole and quadrupole-quadrupole interactions, a system of coupled discrete equations for the second-harmonic generation with the quadratic (χ(2)) nonlinearity, a 2D DNLS equation with a superlattice modulation opening mini-gaps, a discretized NLS equation with rotation, a DNLS coupler and its PT-symmetric version, a system of DNLS equations for the spin-orbit-coupled (SOC) binary Bose-Einstein condensate, and others. The article presents a review of the basic species of multidimensional discrete modes, including fundamental (zero-vorticity) and vortex solitons, their bound states, gap solitons populating mini-gaps, symmetric and asymmetric solitons in the conservative and PT-symmetric couplers, cuspons in the 2D SM, discrete SOC solitons of the semi-vortex and mixed-mode types, 3D discrete skyrmions, and some others.

4.
J Phys Condens Matter ; 36(22)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38394686

ABSTRACT

We study the impact of the Rashba spin-orbit coupling (RSOC) on the stability of charge-density wave (CDW) in systems with large electron-phonon coupling (EPC). Here, the EPC is considered in the framework of the Holstein model at the half-filled square lattice. We obtain the phase diagram of the Rashba-Holstein model using the Hartree-Fock mean-field theory, and identify the boundaries of the CDW and Rashba metal phases. We notice that the RSOC disfavors the CDW phase, driving the system to a correlated Rashba metal. Also, we employ a cluster perturbation theory (CPT) approach to investigate the phase diagram beyond the Hartree-Fock approximation. The quantum correlations captured by CPT indicate that the RSOC is even more detrimental to CDW than previously anticipated. That is, the Rashba metal region is observed to be expanded in comparison to the mean-field case. Additionally, we investigate pairing correlations, and the results further strengthen the identification of critical points.

5.
J Phys Condens Matter ; 33(42)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34289454

ABSTRACT

We demonstrate the formation of stable spatially-ordered states in auniformand alsotrappedquasi-two-dimensional (quasi-2D) Rashba or Dresselhaus spin-orbit (SO) coupled pseudo spin-1/2 Bose-Einstein condensate using the mean-field Gross-Pitaevskii equation. For weak SO coupling, one can have a circularly-symmetric (0, +1)- or (0, -1)-type multi-ring state with intrinsic vorticity, for Rashba or Dresselhaus SO coupling, respectively, where the numbers in the parentheses denote the net angular momentum projection in the two components, in addition to a circularly-asymmetric degenerate state with zero net angular momentum projection. For intermediate SO couplings, in addition to the above two types, one can also have states with stripe pattern in component densities with no periodic modulation in total density. The stripe state continues to exist for large SO coupling. In addition, a new spatially-periodic state appears in the uniform system: asuperlatticestate, possessing some properties of asupersolid, with a square-lattice pattern in component densities and also in total density. In a trapped system the superlattice state is slightly different with multi-ring pattern in component density and a square-lattice pattern in total density. For an equal mixture of Rashba and Dresselhaus SO couplings, in both uniform and trapped systems, only stripe states are found for all strengths of SO couplings. In a uniform system all these states are quasi-2D solitonic states.

6.
J Phys Condens Matter ; 33(26)2021 May 25.
Article in English | MEDLINE | ID: mdl-33882472

ABSTRACT

We study supersolid-like states in a quasi-two-dimensional trapped Rashba and Dresselhaus spin-orbit (SO) coupled spin-1 condensate. For small strengths of SO couplingγ(γ⪅ 0.75), in the ferromagnetic phase, circularly-symmetric (0, ±1, ±2)- and (∓1, 0, ±1)-type states are formed where the numbers in the parentheses denote the angular momentum of the vortex at the center of the components and where the upper (lower) sign correspond to Rashba (Dresselhaus) coupling; in the antiferromagnetic phase, only (∓1, 0, ±1)-type states are formed. For large strengths of SO coupling, supersolid-like superlattice and superstripe states are formed in the ferromagnetic phase. In the antiferromagnetic phase, for large strengths of SO coupling, supersolid-like superstripe and multi-ring states are formed. For an equal mixture of Rashba and Dresselhaus SO couplings, only a superstripe state is found. All these states are found to be dynamically stable and hence accessible in an experiment and will enhance the fundamental understanding of crystallization onto radially periodic states in solids.

7.
Angew Chem Int Ed Engl ; 58(21): 6982-6986, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30908833

ABSTRACT

The dehydrating cyclotrimerization of 1-tetralone in the presence of titanium tetrachloride at high temperatures leads to homotruxene, a nonplanar arene in which the twist angles between its three outer benzene rings and the central benzene are stabilized by ethylene bridges. This non-planar configuration allows for pronounced spin-orbit coupling and a high triplet energy, leading to room-temperature phosphorescence in air with a lifetime of 0.38 s and a quantum yield of 5.6 %, clearly visible to the human eye after switching off the excitation. Triplet-triplet annihilation is found to simultaneously lead to a substantial delayed fluorescence, unprecedented from a pure hydrocarbon at ambient conditions, with a lifetime of 0.11 s.

SELECTION OF CITATIONS
SEARCH DETAIL