Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Turk J Biol ; 47(1): 14-28, 2023.
Article in English | MEDLINE | ID: mdl-37529111

ABSTRACT

Clinical observations show that the current spinal fusion with internal fixation has a nonfusion rate of 5%-35%; however, methods to promote spinal fusion are limited. This study aimed to investigate the role of SDF-1-induced directional chemotaxis of BMSCs in bone marrow chimera spinal intervertebral fusion mouse model. BMSCs were isolated from bone marrow and identified by detecting CD44/CD34 positive cells. BMSCs (GFP-BMSCs) were labeled with GFP for tracking in vivo. Mice were inoculated with GFP-BMSCs to construct bone marrow chimera spinal intervertebral fusion model, which were divided into BM-SIF model, BM-SIF+SDF-1, BM-SIF+SDF-1-Anta group. The callus area of intervertebral fusion site was detected by radiology. HE staining was used to detect trabeculae formation. Expressions of osteogenic molecules and fibroblast markers were detected by RT-PCR and Western blotting. GFP-BMSCs showed obvious osteogenic and adipogenic differentiation ability, according to oil-red O and alizarin-red staining. Bone marrow chimera spinal intervertebral fusion mouse model was successfully established, with efficient localization of GFP-BMSCs at intervertebral fusion site. SDF-1 significantly promoted bone trabeculae formation in callus at intervertebral fusion site. SDF-1 significantly increased osteogenic molecules transcription/expression in callus at intervertebral bone graft fusion site of mice; however, SDF-1-Anta (AMD3100) significantly decreased osteogenic molecules transcrition/expression, compared to those of mice from the BM-SIF model group (p < 0.05). SDF-1 markedly induced and SDF-1-Anta significantly decreased fibroblast proliferations in the callus at the intervertebral fusion site of mice, compared to those of mice from the BM-SIF model group (p < 0.05). SDF-1 enhanced expression of Wnt10b and ß-catenin in callus at intervertebral fusion site of mice compared to mice of the BM-SIF model group (p < 0.05). In conclusion, SDF-1 induced directional chemotaxis of BMSCs to the intervertebral fusion site and promoted osteogenic differentiation in bone marrow chimera spinal intervertebral fusion mice by regulating Wnt/ß-catenin pathway and modulating the proliferation of BMSCs.

2.
JOR Spine ; 6(1): e1236, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994462

ABSTRACT

Background: The use of spinal instrumentation is an established risk factor for postoperative infection. To address this problem, we prepared silver-containing hydroxyapatite coating, consisting of highly osteoconductive hydroxyapatite interfused with silver. The technology has been adopted for total hip arthroplasty. Silver-containing hydroxyapatite coating has been reported to have good biocompatibility and low toxicity. However, no studies about applying this coating in spinal surgery have addressed the osteoconductivity and direct neurotoxicity to the spinal cord of silver-containing hydroxyapatite cages in spinal interbody fusion. Aim: In this study, we evaluated the osteoconductivity and neurotoxicity of silver-containing hydroxyapatite-coated implants in rats. Materials & Methods: Titanium (non-coated, hydroxyapatite-coated, and silver-containing hydroxyapatite-coated) interbody cages were inserted into the spine for anterior lumbar fusion. At 8 weeks postoperatively, micro-computed tomography and histology were performed to evaluate the osteoconductivity of the cage. Inclined plane test and toe pinch test were performed postoperatively to assess neurotoxicity. Results: Micro-computed tomography data indicated no significant difference in bone volume/total volume among the three groups. Histologically, the hydroxyapatite-coated and silver-containing hydroxyapatite-coated groups showed significantly higher bone contact rate than that of the titanium group. In contrast, there was no significant difference in bone formation rate among the three groups. Data of inclined plane and toe pinch test showed no significant loss of motor and sensory function in the three groups. Furthermore, there was no degeneration, necrosis, or accumulation of silver in the spinal cord on histology. Conclusions: This study suggests that silver-hydroxyapatite-coated interbody cages produce good osteoconductivity and are not associated with direct neurotoxicity.

3.
BMC Musculoskelet Disord ; 21(1): 100, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32059656

ABSTRACT

BACKGROUND: Lumbar spinal fusion with rigid spinal fixators as one of the high risk factors related to adjacent-segment failure. The purpose of this study is to investigate how the material properties of spinal fixation rods influence the biomechanical behavior at the instrumented and adjacent levels through the use of the finite element method. METHODS: Five finite element models were constructed in our study to simulate the human spine pre- and post-surgery. For the four post-surgical models, the spines were implanted with rods made of three different materials: (i) titanium rod, (ii) PEEK rod with interbody PEEK cage, (iii) Biodegradable rod with interbody PEEK cage, and (iv) PEEK cage without pedicle screw fixation (no rods). RESULTS: Fusion of the lumbar spine using PEEK or biodegradable rods allowed a similar ROM at both the fusion and adjacent levels under all conditions. The models with PEEK and biodegradable rods also showed a similar increase in contact forces at adjacent facet joints, but both were less than the model with a titanium rod. CONCLUSIONS: Flexible rods or cages with non-instrumented fusion can mitigate the increased contact forces on adjacent facet joints typically found following spinal fixation, and could also reduce the level of stress shielding at the bone graft.


Subject(s)
Bone Transplantation/methods , Finite Element Analysis , Fracture Fixation, Internal/methods , Internal Fixators , Models, Anatomic , Pedicle Screws , Spinal Fusion/methods , Absorbable Implants , Biomechanical Phenomena , Humans , Lumbar Vertebrae/surgery , Lumbosacral Region/surgery , Range of Motion, Articular , Titanium , Zygapophyseal Joint/surgery
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-744553

ABSTRACT

Objective At present, the mainstream surgical mode and the gold standard for the treatment of spine related diseases are still the intervertebral fusion with the intervertebral implantation of the intervertebral fusion device.The intervertebral fusion device routinely used in clinical practice cannot degrade in vivo after implantation, resulting in lifelong foreign body.High elastic modulus also leads to osteoporosis in adjacent vertebral bodies, which leads to implant sinking, stress shielding and'pseudomorphism'of fusion.The ideal biodegradable synthetic intervertebral fusion cage can be progressively degraded and eventually replaced by new bone, which has the advantages of elastic modulus close to cortical bone, good biocompatibility, X-ray permeability and good initial mechanical strength.In this paper, animal analysis of biodegradable intervertebral fusion cage, clinical effect analysis, current shortcomings and future trends were reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...