Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Sci Rep ; 14(1): 15992, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987432

ABSTRACT

Aquaporins (AQPs) are a family of water permeable channels expressed on the plasma membrane with AQP5 being the major channel expressed in several human tissues including salivary and lacrimal glands. Anti-AQP5 autoantibodies have been observed in patients with Sjögren's syndrome who are characterised by dryness of both salivary and lacrimal glands, and they have been implicated in the underlying mechanisms of glandular dysfunction. AQP5 is formed by six transmembrane helices linked with three extracellular and two intracellular loops. Develop antibodies against membrane protein extracellular loops can be a challenge due to the difficulty in maintaining these proteins as recombinant in their native form. Therefore, in this work we aimed to generate an efficient stable-transfected cell line overexpressing human AQP5 (CHO-K1/AQP5) to perform primarily cell-based phage display biopanning experiments to develop new potential recombinant antibodies targeting AQP5. We also showed that the new CHO-K1/AQP5 cell line can be used to study molecular mechanisms of AQP5 sub-cellular trafficking making these cells a useful tool for functional studies.


Subject(s)
Aquaporin 5 , Cricetulus , Aquaporin 5/metabolism , Aquaporin 5/genetics , CHO Cells , Humans , Animals , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Antibodies/metabolism , Peptide Library
2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585913

ABSTRACT

Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. In vivo studies of bats can be challenging for several reasons such as ability to locate and capture them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation. Yet, cells in frozen tissue are usually damaged and represent low integrity and viability. As a result, isolating primary cells from frozen tissues poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this the first protocol specially focused on fibroblasts isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. Basic Protocol 1: Bat wing biopsy collection and preservation Support Protocol 1: Blood collection from bat- venipuncture Basic Protocol 2: Isolation of primary fibroblasts from adult bat frozen wing biopsy Support Protocol 2: Maintenance of primary fibroblasts Support Protocol 3: Cell banking and thawing of primary fibroblasts Support Protocol 4: Growth curve and doubling time Support Protocol 5: Lentiviral transduction of bat primary fibroblasts Basic Protocol 3: Bat stable fibroblasts cell lines development Support Protocol 6: Bat fibroblasts validation by immunofluorescence staining Support Protocol 7: Chromosome counting.

3.
Anal Biochem ; 689: 115494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403258

ABSTRACT

Invasive Aspergillosis is a high-risk illness with a high death rate in immunocompromised people due to a lack of early detection and timely treatment. Based on immunology study, we achieved an efficient production of anti-galactomannan antibody by Chinese hamster ovary (CHO) cells and applied it to time-resolved fluoroimmunoassay for Aspergillus galactomannan detection. We first introduced dual promoter expression vector into CHO host cells, and then applied a two-step screening strategy to screen the stable cell line by methionine sulfoximine pressurization. After amplification and fermentation, antibody yield reached 4500 mg/L. Then we conjugated the antibodies with fluorescent microspheres to establish a double antibody sandwich time-resolved fluoroimmunoassay, which was compared with the commercial Platelia™ Aspergillus Ag by clinical serum samples. The preformed assay could obtain the results in less than 25 min, with a limit of detection for galactomannan of approximately 1 ng/mL. Clinical results of the two methods showed that the overall percent agreement was 97.7% (95% CI: 96.6%-98.4%) and Cohen's kappa coefficient was 0.94. Overall, the assay is highly consistent with commercial detection, providing a more sensitive and effective method for the rapid diagnosis of invasive aspergillosis.


Subject(s)
Aspergillosis , Aspergillus , Galactose/analogs & derivatives , Animals , Cricetinae , Humans , CHO Cells , Cricetulus , Aspergillosis/diagnosis , Mannans , Fluoroimmunoassay , Antibodies, Monoclonal
4.
Vaccines (Basel) ; 11(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37766145

ABSTRACT

The rapid evolution of new SARS-CoV-2 variants poses a continuing threat to human health. Vaccination has become the primary therapeutic intervention. The goal of the current work was the construction of immunogenic virus-like particles (VLPs). Here, we describe a human cell line for cost-efficient and scalable production of immunogenic SARS-CoV-2 VLPs. The modular design of the VLP-production platform facilitates rapid adaptation to new variants. Methods: The N, M-, and E-protein genes were integrated into the genome of Expi293 cells (ExpiVLP_MEN). Subsequently, this cell line was further modified for the constitutive expression of the SARS-CoV-2 spike protein. The resulting cell line (ExpiVLP_SMEN) released SARS-CoV-2 VLP upon exposure to doxycycline. ExpiVLP_SMEN cells were readily adapted for VLP production in a 5 L bioreactor. Purified VLPs were quantified by Western blot, ELISA, and nanoparticle tracking analysis and visualized by electron microscopy. Immunogenicity was tested in mice. Results: The generated VLPs contained all four structural proteins, are within the size range of authentic SARS-CoV-2 virus particles, and reacted strongly and specifically with immunoserum from naturally infected individuals. The VLPs were stable in suspension at 4 °C for at least 10 weeks. Mice immunized with VLPs developed neutralizing antibodies against lentiviruses pseudotyped with the SARS-CoV-2 spike protein. The flexibility of the VLP-production platform was demonstrated by the rapid switch of the spike protein to a new variant of concern (BA.1/Omicron). The present study describes an efficient, scalable, and adaptable production method of immunogenic SARS-CoV-2 VLPs with therapeutic potential.

5.
Antib Ther ; 6(3): 170-179, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37492586

ABSTRACT

Bispecific antibodies (bsAbs) are often composed of more than two component chains, such as Fabs-in-tandem immunoglobin (FIT-Ig) comprising three different component chains, which bring challenges for generating a high proportion of the correctly assembled bsAbs in a stable cell line. During the CHO-K1 stable cell line construction of a FIT-Ig, we investigated the FIT-Ig component chain ratio in transfection, where two sets of expression vectors were designed. Both designs utilized two vectors for co-transfection. Multiple transfections with plasmid ratio adjustment were applied, and the resultant minipools were evaluated for expression titer and quality of produced FIT-Ig. The results suggested that abundant outer Fab short chains (twofold chain genes versus other chains) can promote complete FIT-Ig assembly and therefore reduce the fragmental impurities of FIT-Ig. This adjustment of the component chain ratios at the beginning is beneficial to FIT-Ig stable cell line generation and brings favorable clones to process development.

6.
Methods Mol Biol ; 2676: 159-167, 2023.
Article in English | MEDLINE | ID: mdl-37277631

ABSTRACT

The expansion of the genetic code has enabled the incorporation of noncanonical amino acids (ncAAs) into a defined site of proteins. By introducing such a unique handle into the protein of interest (POI), bioorthogonal reactions can be utilized in live cells to monitor or manipulate the interaction, translocation, function, and modification of the POI. Here, we describe a basic protocol outlining the necessary steps to incorporate a ncAA into a POI in mammalian cells.


Subject(s)
Amino Acyl-tRNA Synthetases , Proteins , Animals , Proteins/chemistry , Amino Acids/chemistry , Genetic Code , Amino Acyl-tRNA Synthetases/metabolism , Mammals/genetics , Mammals/metabolism
7.
Front Pharmacol ; 14: 1188290, 2023.
Article in English | MEDLINE | ID: mdl-37188274

ABSTRACT

A cell-based transduction inhibition assay (TI) is widely used in clinical trials to detect neutralizing antibody (NAb) titers against recombinant adeno-associated virus (rAAV), one of the most important criteria to exclude patients in gene therapy. Different cell lines are used in cell-based TI because the rAAV transduction efficiencies vary largely among serotypes. A cell line suitable for TI for most serotypes is highly desirable, especially for those with very low transduction efficiencies in vitro such as rAAV8 and rAAV9. Herein, we report an AAVR-HeLa, a stable cell line with overexpressed AAVR, a newly identified receptor for rAAVs, was established for cell-based TIs. The AAVR expression level in AAVR-HeLa cells was approximately 10-fold higher than in HeLa cells, and was stably transfected after twenty three passages. For all AAV serotypes (AAV1-10), except for AAV4, the transduction efficiencies increased significantly in AAVR-HeLa cells. It was demonstrated that the AAVR enhancement of transduction efficiency was only for rAAV and not for lentiviral and adenoviral vectors. According to the minimal multiplicity of infection (MOIs) for the assay, the NAb detection sensitivity increased at least 10 and 20 fold for AAV8 and AAV9, respectively. The seroprevalence of NAbs were investigated at the 1:30 level as a cutoff value using AAVR-HeLa cells. It was shown that the seropositive rate for AAV2 was 87% in serum samples from 99 adults, followed by lower seropositive rates for AAV5 (7%), AAV8 (7%) and AAV9 (1%). Venn diagram analysis showed the presence of cross-reactivity of NAbs to two or three serotypes in 13 samples (13.1%). However, no patient was found to possess NAbs for all the four serotypes. These results demonstrated that the AAVR-HeLa cell line may be utilized to detect the NAbs through cell-based TI assays for most of AAV serotypes.

8.
Biotechnol Bioeng ; 120(9): 2578-2587, 2023 09.
Article in English | MEDLINE | ID: mdl-37027346

ABSTRACT

The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.


Subject(s)
Dependovirus , Genetic Vectors , Humans , Dependovirus/genetics , HEK293 Cells , HeLa Cells , Transfection
9.
Curr Gene Ther ; 23(3): 184-197, 2023.
Article in English | MEDLINE | ID: mdl-36999706

ABSTRACT

Adeno-associated viruses (AAV) are widely used as a recombinant vectors in gene therapy. AAVs are non-pathogenic. They present reduced cytotoxicity and can transduce both dividing and non-dividing cells. The existence of different serotypes provides flexibility for targeting different tissues and organs. Its therapeutic success was already shown by the approval of three products by the European and American regulatory agencies. To satisfy the high dosage, safety, and reproducibility required in each clinical trial, production platforms based on stable mammalian cell lines have been proposed as the best strategy. However, the methodologies employed must be adapted to each cell line, which often results in distinct productivities. In this article, we review the published and commercially available mammalian stable cell lines, discussing the key factors that impact viral production yields, such as integration sites and copy numbers.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Genetic Vectors/genetics , Dependovirus/genetics , Reproducibility of Results , Cell Line , Mammals/genetics
10.
Cells ; 12(4)2023 02 14.
Article in English | MEDLINE | ID: mdl-36831286

ABSTRACT

To increase the safety of adenovirus vector (AdV)-based therapy without reducing its efficacy, a single-cycle adenovirus vector (SC-AdV) with a deletion in the protease gene (PS) was developed in order to be used as a substitute for the replication-competent adenovirus (RC-AdV). Since no infectious viral particles are assembled, there is no risk of viral shedding. The complementary cell lines for this developed AdV proved to be suboptimal for the production of viral particles and require the presence of fetal bovine serum (FBS) to grow. In the current study, we produced both stable pools and clones using adherent and suspension cells expressing the PS gene. The best adherent cell pool can be used in the early stages for the generation of protease-deleted adenovirus, plaque purification, and titration. Using this, we produced over 3400 infectious viral particles per cell. Additionally, the best suspension subclone that was cultured in the absence of FBS yielded over 4000 infectious viral particles per cell. Harvesting time, culture media, and concentration of the inducer for the best suspension subclone were further characterized. With these two types of stable cells (pool and subclone), we successfully improved the titer of protease-deleted adenovirus in adherent and suspension cultures and eliminated the need for FBS during the scale-up production. Eight lots of SC-AdV were produced in the best suspension subclone at a scale of 2 to 8.2 L. The viral and infectious particle titers were influenced by the virus backbone and expressed transgene.


Subject(s)
Adenoviridae , Genetic Vectors , Cell Line , Adenoviridae/genetics , Peptide Hydrolases/genetics
11.
Biology (Basel) ; 12(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36829467

ABSTRACT

HN1 has previously been shown as overexpressed in various cancers. In Prostate cancer, it regulates AR signaling and centrosome-related functions. Previously, in two different studies, HN1 expression has been observed as inversely correlated with Cyclin B1. However, HN1 interacting partners and the role of HN1 interactions in cell cycle pathways have not been completely elucidated. Therefore, we used Prostate cancer cell lines again and utilized both transient and stable inducible overexpression systems to delineate the role of HN1 in the cell cycle. HN1 characterization was performed using treatments of kinase inhibitors, western blotting, flow cytometry, immunofluorescence, cellular fractionation, and immunoprecipitation approaches. Our findings suggest that HN1 overexpression before mitosis (post-G2), using both transient and stable expression systems, leads to S-phase accumulation and causes early mitotic exit after post-G2 overexpression. Mechanistically, HN1 interacted with Cyclin B1 and increased its degradation via ubiquitination through stabilized Cdh1, which is a co-factor of the APC/C complex. Stably HN1-expressing cells exhibited a reduced Cdt1 loading onto chromatin, demonstrating an exit from a G1 to S phenotype. We found HN1 and Cdh1 interaction as a new regulator of the Cyclin B1/CDK1 axis in mitotic regulation which can be explored further to dissect the roles of HN1 in the cell cycle.

12.
Comb Chem High Throughput Screen ; 26(4): 801-814, 2023.
Article in English | MEDLINE | ID: mdl-35762541

ABSTRACT

BACKGROUND: The incidence of sleep disorders is more than 27% in the worldwide, and the development of novel sleep drugs that target GABAA receptors is of great interest. Traditional drug screening methods restrict the discovery of lead compounds, the high-throughput screening system is a powerful means for the lead compounds discovery of sleep drug. METHODS: The GABAA1-CHO cell line stably expressing α1ß2γ2L was constituted by cotransfection of α1, ß2 and γ2L subunits into CHO-T-Rex cells. The high-throughput screening method of membrane potential targeting GABAAR was established and optimized. The optimized method was used to screen the compound library, and the compounds with high activity were obtained. The active compounds were confirmed in vitro by electrophysiological detection technique, and the sleep effects of compounds in vivo were detected by pentobarbital sodium sleep model in mice. RESULTS: A stable cell line expressing human GABAA1 receptor in CHO-T-Rex cells was generated and used to establish a functional high-throughput screening assay based on the measurement of membrane potential changes in living cells by fluorometric imaging plate reader (FLIPR). The assay was further used to detect the dose-effect relationships of tool compounds, the EC50 values of agonist GABA (137.42 ± 26.31 nM), positive allosteric modulator diazepam (3.22 ± 0.73 µM), and antagonist gabazine (0.16 ± 0.04 µM), blocking agents bicuculine (0.47 ± 0.06 µM) and PTX (6.39 ± 1.17 µM). In the meanwhile, the compounds were screened from a compound library (10000) by the membrane potential dye assay. Selected 4 active compounds were further identified for their EC50 values in vitro by electrophysiological method, the EC50 values of 4 compounds were further determined as 1.37 ± 0.43 µM, 0.69 ± 0.17 µM, 0.77 ± 0.16 µM, and 1.62 ± 0.29 µM. Furthermore, the pentobarbital sleep rate and the sleep time of mice pretreated with 4 active compounds by oral administration were significantly increased compared with mice pretreated with a negative control in vivo experiment. CONCLUSION: We successfully generated a stable CHO cell line expressing human GABAA1 by induced expression strategy which decreased cytotoxicity. Then, developed an efficient membrane potential detection method for high-throughput screening, the assay based on the stable cell line could distinguish different types of GABAA1 modulators, which would be an effective in vitro system to screen the GABAAR-targeted compounds. Compared with the patch clamp electrophysiological detection method, the membrane potential detection method has higher detection flux for compounds and higher detection sensitivity for active compounds.


Subject(s)
High-Throughput Screening Assays , Receptors, GABA-A , Mice , Animals , Humans , Membrane Potentials/physiology , Cell Line , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/pharmacology
13.
Methods Mol Biol ; 2557: 391-416, 2023.
Article in English | MEDLINE | ID: mdl-36512228

ABSTRACT

Stable cell lines that express a gene of specific interest provide an advantage over transient gene expression by reducing variations in transfection efficiency between experiments, sustaining expression for long-term studies, and controlling expression levels in particular if a clonal population is selected. Transient transfection requires introduction of an exogenous gene into host cells via typically harsh chemicals or conditions that permeabilize the cell membrane, which does not normally integrate into the target cell genome. Here, we describe the method of using retroviral transduction to stably express Golgi proteins fused to a promiscuous biotin ligase (TurboID) in HeLa cells, thus creating cell lines that can be leveraged in studies of the proximome/interactome. We also demonstrate a similar protocol for stable expression of a Golgi protein fused to a fluorescent tag via lentiviral transduction. These methods can be further adapted to establish other cell lines with different sub-cellular markers or fusion tags. Viral transduction is a convenient method to create stable cell lines in cell-based studies.


Subject(s)
Golgi Apparatus , Retroviridae , Humans , Golgi Matrix Proteins/metabolism , HeLa Cells , Transfection , Transduction, Genetic , Golgi Apparatus/metabolism
14.
Biomedicines ; 10(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892681

ABSTRACT

Angiogenesis is the formation of new blood vessels from pre-existing vessels. Adequate oxygen transport and waste removal are necessary for tissue homeostasis. Restrictions in blood supply can lead to ischaemia which can contribute to disease pathology. Vascular endothelial growth factor (VEGF) is essential in angiogenesis and myogenesis, making it an ideal candidate for angiogenic and myogenic stimulation in muscle. We established C2C12 mouse myoblast cell lines which stably express elevated levels of (i) human VEGF-A and (ii) dual human FGF4-VEGF-A. Both stably transfected cells secreted increased amounts of human VEGF-A compared to non-transfected cells, with the latter greater than the former. In vitro, conditioned media from engineered cells resulted in a significant increase in endothelial cell proliferation, migration, and tube formation. In vivo, this conditioned media produced a 1.5-fold increase in angiogenesis in the chick chorioallantoic membrane (CAM) assay. Delivery of the engineered myoblasts on Matrigel demonstrated continued biological activity by eliciting an almost 2-fold increase in angiogenic response when applied directly to the CAM assay. These studies qualify the use of genetically modified myoblasts in therapeutic angiogenesis for the treatment of muscle diseases associated with vascular defects.

15.
Methods Mol Biol ; 2524: 299-306, 2022.
Article in English | MEDLINE | ID: mdl-35821481

ABSTRACT

Firefly luciferase (FLuc)-based in vivo optical imaging technology exerts the non-invasive monitoring of transplanted cells in experimental animal models. This chapter introduces an established cell line that stably expresses a retrovirus-delivered FLuc protein gene. The stable expression does not affect the cell morphology, proliferation, migration, and invasion abilities of the parental cells. After implantation, the bioluminescence signal of FLuc cells truly reflects cell proliferation and survival in vivo, which can provide a reliable method for dynamic detection of in vivo cell transplantation.


Subject(s)
Cell Transplantation , Luciferases, Firefly , Animals , Cell Line , Cell Proliferation , Luciferases, Firefly/genetics , Mammals , Optical Imaging
16.
Stem Cell Rev Rep ; 18(8): 3008-3020, 2022 12.
Article in English | MEDLINE | ID: mdl-35661078

ABSTRACT

BACKGROUND: The human Y chromosome harbors genes that are mainly involved in the growth, development, sexual dimorphism, and spermatogenesis process. Despite many studies, the function of the male-specific region of the Y chromosome (MSY) awaits further clarification, and a cell-based approach can help in this regard. RESULTS: In this study, we have developed four stable transgenic male embryonic stem cell (ESCs) lines that can overexpress male-specific genes HSFY1, RBMY1A1, RPS4Y1, and SRY. As a proof of principle, we differentiated one of these cell lines (RPS4Y1 over-expressing ESCs) to the neural stem cell (rosette structure) and characterized them based on the expression level of lineage markers. RPS4Y1 expression in the Doxycycline-treated group was significantly higher than control groups at transcript and protein levels. Furthermore, we found Doxycycline-treated group had a higher differentiation efficiency than the untreated control groups. CONCLUSIONS: Our results suggest that the RPS4Y1 gene may play a critical role in neurogenesis. Also, the generated transgenic ESC lines can be widely employed in basic and preclinical studies, such as sexual dimorphism of neural and cardiac functions, the development of cancerous and non-cancerous disease models, and drug screening.


Subject(s)
Human Embryonic Stem Cells , Humans , Male , Genes, Y-Linked , Doxycycline/metabolism , Embryonic Stem Cells , Neurogenesis/genetics
17.
Cell Rep Methods ; 2(7): 100252, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35757815

ABSTRACT

Efficient quantitative assays for measurement of viral replication and infectivity are indispensable for future endeavors to develop prophylactic or therapeutic antiviral drugs or vaccines against SARS-CoV-2. We developed a SARS-CoV-2 cell-cell transmission assay that provides a rapid and quantitative readout to assess SARS-CoV-2 spike hACE2 interaction in the absence of pseudotyped particles or live virus. We established two well-behaved stable cell lines, which demonstrated a remarkable correlation with standard cell-free viral pseudotyping for inhibition by convalescent sera, small-molecule drugs, and murine anti-spike monoclonal antibodies. The assay is rapid, reliable, and highly reproducible, without a requirement for any specialized research reagents or laboratory equipment and should be easy to adapt for use in most investigative and clinical settings. It can be effectively used or modified for high-throughput screening for compounds and biologics that interfere with virus-cell binding and entry to complement other neutralization assays currently in use.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , COVID-19/therapy , Antibodies, Neutralizing , COVID-19 Vaccines , Antibodies, Viral , COVID-19 Serotherapy
18.
Antiviral Res ; 199: 105268, 2022 03.
Article in English | MEDLINE | ID: mdl-35271914

ABSTRACT

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-ß but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-ß. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , High-Throughput Screening Assays , Humans , Replicon , SARS-CoV-2/genetics , Virus Replication
19.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1074-1085, 2022 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-35355475

ABSTRACT

To investigate the cellular target selectivity of small molecules targeting thioredoxin reductase 1, we reported the construction and functional research of a stable TrxR1 gene (encode thioredoxin reductase 1) knockout HCT-116 cell line. We designed and selected TrxR1 knockout sites according to the TrxR1 gene sequence and CRISPR/Cas9 target designing principles. SgRNA oligos based on the selected TrxR1 knockout sites were obtained. Next, we constructed knockout plasmid by cloning the sgRNA into the pCasCMV-Puro-U6 vector. After transfection of the plasmid into HCT-116 cells, TrxR1 knockout HCT-116 cells were selected using puromycin resistance. The TrxR1 knockout efficiency was identified and verified by DNA sequencing, immunoblotting, TRFS-green fluorescent probe, and cellular TrxR1 enzyme activity detection. Finally, the correlation between TrxR1 expression and cellular effects of drugs specifically targeting TrxR1 was investigated by CCK-8 assay. The results demonstrated that the knockout plasmid expressing the sgRNA effectively knocked-out TrxR1 gene within HCT-116 cells, and no expression of TrxR1 protein could be observed in stable TrxR1 knockout HCT-116 (HCT116-TrxR1-KO) cells. The TrxR1-targeting inhibitor auranofin did not show any inhibitory activity against either cellular TrxR1 enzyme activity or cell proliferation. Based on these results, we conclude that a stable TrxR1 gene knockout HCT-116 cell line was obtained through CRISPR/Cas9 techniques, which may facilitate investigating the role of TrxR1 in various diseases.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Knockout Techniques , HCT116 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
20.
Chinese Journal of Biotechnology ; (12): 1074-1085, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927764

ABSTRACT

To investigate the cellular target selectivity of small molecules targeting thioredoxin reductase 1, we reported the construction and functional research of a stable TrxR1 gene (encode thioredoxin reductase 1) knockout HCT-116 cell line. We designed and selected TrxR1 knockout sites according to the TrxR1 gene sequence and CRISPR/Cas9 target designing principles. SgRNA oligos based on the selected TrxR1 knockout sites were obtained. Next, we constructed knockout plasmid by cloning the sgRNA into the pCasCMV-Puro-U6 vector. After transfection of the plasmid into HCT-116 cells, TrxR1 knockout HCT-116 cells were selected using puromycin resistance. The TrxR1 knockout efficiency was identified and verified by DNA sequencing, immunoblotting, TRFS-green fluorescent probe, and cellular TrxR1 enzyme activity detection. Finally, the correlation between TrxR1 expression and cellular effects of drugs specifically targeting TrxR1 was investigated by CCK-8 assay. The results demonstrated that the knockout plasmid expressing the sgRNA effectively knocked-out TrxR1 gene within HCT-116 cells, and no expression of TrxR1 protein could be observed in stable TrxR1 knockout HCT-116 (HCT116-TrxR1-KO) cells. The TrxR1-targeting inhibitor auranofin did not show any inhibitory activity against either cellular TrxR1 enzyme activity or cell proliferation. Based on these results, we conclude that a stable TrxR1 gene knockout HCT-116 cell line was obtained through CRISPR/Cas9 techniques, which may facilitate investigating the role of TrxR1 in various diseases.


Subject(s)
Humans , CRISPR-Cas Systems/genetics , Gene Editing , Gene Knockout Techniques , HCT116 Cells , /metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...