Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Bio Protoc ; 14(12): e5016, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948263

ABSTRACT

Human babesiosis is a tick-borne disease caused by Babesia pathogens. The disease, which presents with malaria-like symptoms, can be life-threatening, especially in individuals with weakened immune systems and the elderly. The worldwide prevalence of human babesiosis has been gradually rising, prompting alarm among public health experts. In other pathogens, genetic techniques have proven to be valuable tools for conducting functional studies to understand the importance of specific genes in development and pathogenesis as well as to validate novel cellular targets for drug discovery. Genetic manipulation methods have been established for several non-human Babesia and Theileria species and, more recently, have begun to be developed for human Babesia parasites. We have previously reported the development of a method for genetic manipulation of the human pathogen Babesia duncani. This method is based on positive selection using the hDHFR gene as a selectable marker, whose expression is regulated by the ef-1aB promoter, along with homology regions that facilitate integration into the gene of interest through homologous recombination. Herein, we provide a detailed description of the steps needed to implement this strategy in B. duncani to study gene function. It is anticipated that the implementation of this method will significantly improve our understanding of babesiosis and facilitate the development of novel and more effective therapeutic strategies for the treatment of human babesiosis. Key features This protocol provides an effective means of transfection of B. duncani, enabling genetic manipulation and editing to gain further insights into its biology and pathogenesis. The protocol outlined here for the electroporation of B. duncani represents an advancement over previous methods used for B. bovis [1]. Improvements include higher volume of culture used during the electroporation step and an enhancement in the number of electroporation pulses. These modifications likely enhance the efficiency of gene editing in B. duncani, allowing for quicker and more effective selection of transgenic parasites.

2.
Front Immunol ; 15: 1326728, 2024.
Article in English | MEDLINE | ID: mdl-38915394

ABSTRACT

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Subject(s)
Fibroblasts , Keloid , Telomerase , Humans , Keloid/pathology , Keloid/metabolism , Fibroblasts/metabolism , Telomerase/genetics , Telomerase/metabolism , Cell Line , Cell Line, Transformed , Male , Female , Adult , Middle Aged
3.
Virology ; 592: 109988, 2024 04.
Article in English | MEDLINE | ID: mdl-38244322

ABSTRACT

Infection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants. Transfectant clones expressed ACE2 protein at levels that were generally proportional to the number of ACE2 gene copies integrated in the cell genome, ranging up to approximately 50 times the level of ACE2 present of Vero-E6 cells. Cells overexpressing ACE2 were hypersensitive to infection by spike-pseudotyped vesicular stomatitis virus (VSV-S), and adsorption of VSV-S to these cells occurred at an accelerated rate compared to Vero-E6 cells. The transfectant cell clones described here therefore have favorable attributes as feedstocks for large-scale production of recombinant human ACE2 protein.


Subject(s)
Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Chlorocebus aethiops , Fibroblasts/metabolism , Membrane Glycoproteins/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
4.
Methods Mol Biol ; 2681: 343-359, 2023.
Article in English | MEDLINE | ID: mdl-37405657

ABSTRACT

Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.


Subject(s)
Matrix Attachment Regions , Animals , Clone Cells/metabolism , Recombinant Proteins/metabolism , Transgenes
5.
Protein Expr Purif ; 210: 106295, 2023 10.
Article in English | MEDLINE | ID: mdl-37201590

ABSTRACT

The human cell line HEK293 is one of the preferred choices for manufacturing therapeutic proteins and viral vectors for human applications. Despite its increased use, it is still considered in disadvantage in production aspects compared to cell lines such as the CHO cell line. We provide here a simple workflow for the rapid generation of stably transfected HEK293 cells expressing an engineered variant of the SARS-CoV-2 Receptor Binding Domain (RBD) carrying a coupling domain for linkage to VLPs through a bacterial transpeptidase-sortase (SrtA). To generate stable suspension cells expressing the RBD-SrtA, a single two plasmids transfection was performed, with hygromycin selection. The suspension HEK293 were grown in adherent conditions, with 20% FBS supplementation. These transfection conditions increased cell survival, allowing the selection of stable cell pools, which was otherwise not possible with standard procedures in suspension. Six pools were isolated, expanded and successfully re-adapted to suspension with a gradual increase of serum-free media and agitation. The complete process lasted four weeks. Stable expression with viability over 98% was verified for over two months in culture, with cell passages every 4-5 days. With process intensification, RBD-SrtA yields reached 6.4 µg/mL and 13.4 µg/mL in fed-batch and perfusion-like cultures, respectively. RBD-SrtA was further produced in fed-batch stirred tank 1L-bioreactors, reaching 10-fold higher yields than perfusion flasks. The trimeric antigen displayed the conformational structure and functionality expected. This work provides a series of steps for stable cell pool development using suspension HEK293 cells aimed at the scalable production of recombinant proteins.


Subject(s)
COVID-19 , Humans , HEK293 Cells , SARS-CoV-2 , Bioreactors , Recombinant Proteins/genetics
6.
Pharmaceutics ; 15(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36839742

ABSTRACT

BACKGROUND: One of the most significant limitations that therapeutic oligonucleotides present is the development of specific and efficient delivery vectors for the internalization of nucleic acids into cells. Therefore, there is a need for the development of new transfection agents that ensure a proper and efficient delivery into mammalian cells. METHODS: We describe the synthesis of 1,3,5-tris[(4-oelyl-1-pyridinio)methyl]benzene tribromide (TROPY) and proceeded to the validation of its binding capacity toward oligonucleotides, the internalization of DNA into the cells, the effect on cell viability, apoptosis, and its capability to transfect plasmid DNA. RESULTS: The synthesis and chemical characterization of TROPY, which can bind DNA and transfect oligonucleotides into mammalian cells through clathrin and caveolin-mediated endocytosis, are described. Using a PPRH against the antiapoptotic survivin gene as a model, we validated that the complex TROPY-PPRH decreased cell viability in human cancer cells, increased apoptosis, and reduced survivin mRNA and protein levels. TROPY was also able to stably transfect plasmid DNA, as demonstrated by the formation of viable colonies upon the transfection of a dhfr minigene into dhfr-negative cells and the subsequent metabolic selection. CONCLUSIONS: TROPY is an efficient transfecting agent that allows the delivery of therapeutic oligonucleotides, such as PPRHs and plasmid DNA, inside mammalian cells.

7.
Drug Discov Ther ; 17(1): 1-9, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36740253

ABSTRACT

Transcription factor GATA6 stably expressed in Chinese hamster ovary (CHO)-K1 cells is exported from the nucleus to the cytoplasm and degraded there by proteasome upon treatment with dibutylyl-cyclic AMP (dbcAMP), which is a membrane-permeable cyclic AMP (cAMP) analogue. The cAMP-dependent proteolysis of GATA6 was characterized by dissection of the GATA6 protein into a zinc-finger domain (Zf) and the surrounding region (ΔZf). These segments were separately expressed in CHO-K1 cells stably, and followed by treatment with dbcAMP. The nuclear localized Zf was degraded by proteasome similarly to the full-length GATA6. Site-directed mutants of nuclear localizing signal (NLS) (345RKRKPK350 → AAAAPK and AAAAPA) and closely related GATA4 showed the same behavior. Although nuclear-localized ΔZf was degraded by proteasome, the cytoplasmic-located ΔZf was resistant to proteolysis in contrast to the NLS mutants. We also searched for a potential NLS and nuclear export signal (NES) with computational prediction programs and compared the results with ours. All these results suggest that the amino acid sequence(s) of the Zf of GATA6 is responsive to cAMP-dependent nuclear export and proteolysis.


Subject(s)
Cyclic AMP , Proteasome Endopeptidase Complex , Cricetinae , Animals , Proteasome Endopeptidase Complex/metabolism , Cyclic AMP/metabolism , Active Transport, Cell Nucleus , Bucladesine/metabolism , CHO Cells , Proteolysis , Cricetulus , Cytoplasm/metabolism , Cell Nucleus/metabolism , Zinc/metabolism
8.
China Tropical Medicine ; (12): 186-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979614

ABSTRACT

@#Abstract: Transfection of Plasmodium falciparum is helpful to study the function of its genes, such as drug resistance. However, transgenic manipulation has been very challenging, mainly due to the high A/T base sequence structure (A+T content of about 82%) and low transfection efficiency of the Plasmodium genome. Electroporation-based transfection of Plasmodium falciparum has been successfully applied in the study of certain genes, and electroporation by preloading is currently the preferred method for introducing foreign DNA into Plasmodium falciparum. The site-directed editing of Plasmodium genes mostly adopts the method of two-plasmid transfection. It is generally believed that successful transfection of Plasmodium requires a large amount of high-purity plasmid DNA and an accurate transfection system. In addition to the evaluation of the current commonly used electrotransfection methods, this paper also introduces a new transfection method, namely lyse-reseal erythrocytes for transfection (LyRET). This paper also review the role of factors such as plasmid DNA concentration, the use of transfection reagents, the setting of transfection parameters, the addition of fresh red blood cells, and the markers of successful transfection in improving the success rate and efficiency of Plasmodium transfection, in the hope of providing a reference for study in this field.

9.
Front Cell Infect Microbiol ; 12: 844498, 2022.
Article in English | MEDLINE | ID: mdl-35463640

ABSTRACT

Genetic modification provides an invaluable molecular tool to dissect the biology and pathogenesis of pathogens. However, no report is available about the genetic modification of Babesia duncani, a pathogen responsible for human babesiosis that is widespread in North America, suggesting the necessity to develop a genetic manipulation method to improve the strategies for studying and understanding the biology of protozoan pathogens. The establishment of a genetic modification method requires promoters, selectable markers, and reporter genes. Here, the double-copy gene elongation factor-1α (ef-1α) and its promoters were amplified by conventional PCR and confirmed by sequencing. We established a transient transfection system by using the ef-1αB promoter and the reporter gene mCherry and achieved stable transfection through homologous recombination to integrate the selection marker hDHFR-eGFP into the parasite genome. The potential of this genetic modification method was tested by knocking out the thioredoxin peroxidase-1 (TPX-1) gene, and under the drug pressure of 5 nM WR99210, 96.3% of the parasites were observed to express green fluorescence protein (eGFP) by flow cytometry at day 7 post-transfection. Additionally, the clone line of the TPX-1 knockout parasite was successfully obtained by the limiting dilution method. This study provided a transfection method for B. duncani, which may facilitate gene function research and vaccine development of B. duncani.


Subject(s)
Babesia , Babesiosis , Babesiosis/parasitology , Genes, Reporter , Green Fluorescent Proteins/genetics , Homologous Recombination , Humans , Transfection
10.
Parasit Vectors ; 14(1): 463, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34503543

ABSTRACT

BACKGROUND: Stable transfection systems have been described in many protozoan parasites, including Plasmodium falciparum, Cryptosporidium parvum, Babesia bovis, Babesia ovata, and Babesia gibsoni. For Babesia sp. Xinjiang (Bxj), which is the causative pathogen of ovine babesiosis and mainly prevails across China, the platform of those techniques remains absent. Genetic manipulation techniques are powerful tools to enhance our knowledge on parasite biology, which may provide potential drug targets and diagnostic markers. METHODS: We evaluated the inhibition efficiency of blasticidin (BSD) and WR99210 to Bxj. Then, a plasmid was constructed bearing selectable marker BSD, green fluorescent protein (GFP) gene, and rhoptry-associated protein-1 3' terminator region (rap 3' TR). The plasmid was integrated into the elongation factor-1 alpha (ef-1α) site of Bxj genome by cross-over homologous recombination technique. Twenty µg of plasmid was transfected into Bxj merozoites. Subsequently, drug selection was performed 24 h after transfection to generate transfected parasites. RESULTS: Transfected parasite lines, Bxj-c1, Bxj-c2, and Bxj-c3, were successfully obtained after transfection, drug selection, and colonization. Exogenous genes were integrated into the Bxj genome, which were confirmed by PCR amplification and sequencing. In addition, results of western blot (WB) and indirect immunofluorescence assay (IFA) revealed that GFP-BSD had expressed for 11 months. CONCLUSIONS: In our present study, stable transfection system for Bxj was successfully developed. We anticipate that this platform will greatly facilitate basic research of Bxj.


Subject(s)
Babesia/genetics , Babesiosis/parasitology , Sheep Diseases/parasitology , Animals , China , Green Fluorescent Proteins , Homologous Recombination , Merozoites , Plasmids , Sheep , Transfection
11.
Vaccines (Basel) ; 9(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34358207

ABSTRACT

The potential of Eimeria parasites as live vaccine vectors has been reported with successful genetic manipulation on several species like E. tenella, E. mitis and E. necatrix. Among seven Eimeria species infecting chickens, E. acervulina is a highly prevalent, moderately pathogenic species. Thus, it is valuable for the study of transfection and for use as a potential as vaccine vector. In this study, a plasmid containing expression cassette with enhanced yellow fluorescent protein (EYFP), red fluorescent protein (RFP) and 12 copies of extracellular domain of H9N2 avian influenza virus M2 (M2e) protein was used for the transfection. Nucleofected sporozoites were inoculated into birds through wing vein. Recombinant E. acervulina oocysts with 0.1% EYFP+ and RFP+ populations were collected from the feces of the inoculated birds. The fluorescent rate of transgenic parasites reached over 95% after nine successive propagations with a pyrimethamine selection in vivo and fluorescent-activated cell sorting (FACS) of progeny oocysts. The expression of M2e in the transgenic parasites (EaM2e) was confirmed by Western blot and its cytoplasm localization in sporozoites was displayed by an indirect immunofluorescent assay (IFA). Meanwhile, we found that the fecundity of EaM2e was equivalent to that of wild type E. acervulina (EaWT). Taken together, the stable transfection of E. acervulina was successfully established. Future studies will focus on whether transgenic E. acervulina can serve as a live vaccine vector.

12.
Curr Biol ; 31(18): 4104-4110.e5, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34293333

ABSTRACT

The evolutionary path from protists to multicellular animals remains a mystery. Recent work on the genomes of several unicellular relatives of animals has shaped our understanding of the genetic changes that may have occurred in this transition.1-3 However, the specific cellular modifications that took place to accommodate these changes remain unclear. To address this, we need to compare metazoan cells with those of their extant relatives, which are choanoflagellates, filastereans, ichthyosporeans, and corallochytreans/pluriformeans. Interestingly, these lineages display a range of developmental patterns potentially homologous to animal ones. Genetic tools have already been established in three of those lineages.4-7 However, there are no genetic tools available for Corallochytrea. We here report the development of stable transfection in the corallochytrean Corallochytrium limacisporum. Using these tools, we discern previously unknown biological features of C. limacisporum. In particular, we identify two different paths for cell division-binary fission and coenocytic growth-that reveal a non-linear life cycle. Additionally, we found that C. limacisporum is binucleate for most of its life cycle, and that, contrary to what happens in most eukaryotes, nuclear division is decoupled from cellular division. Moreover, its actin cytoskeleton shares characteristics with both fungal and animal cells. The establishment of these tools in C. limacisporum fills an important gap in the unicellular relatives of animals, opening up new avenues of research to elucidate the specific cellular changes that occurred in the evolution of animals.


Subject(s)
Eukaryota , Fungi , Animals , Cell Nucleus Division , Eukaryota/genetics , Fungi/genetics , Phylogeny , Transfection
13.
Yi Chuan ; 43(3): 280-288, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33724212

ABSTRACT

To improve the transfection efficiency of chicken primordial germ cells (PGCs), the present study evaluated the plasmid dosage and cell number on the efficiencies of three transfection reagents (Lipofectamine 2000, 3000 and LTX & Plus Reagent). PGCs was isolated from embryonic gonads of Huiyang bearded chicken. After 60 days of culture in vitro, the cells were transfected by using Lipofectamine transfection reagents with piggyBac vectors coding for the green fluorescence protein (GFP). PGCs were passaged in culture and fluorescent cells were screened and selected by flow cytometry at three days after transfection. At three weeks post transfection, about 2000 cells were injected into the stage 16 Hamburger and Hamilton (HH) embryos and incubated until stage 30 HH. The results showed that Lipofectamine 3000 was the best for transfection of PGCs. The highest transfection efficiency of PGCs could be achieved with a combination of 3 µg plasmid, 4 µL Lipofectamine 3000 transfection reagent and 0.5×10 4PGCs cells. Flow cytometry analysis showed a 23.4% efficiency of stable transfection of PGCs using Lipofectamine 3000 with piggyBac vector, which was improved 2 times or more over current commonly used methods. After reinjecting PGCs into recipient chicken embryos, GFP-positive cells were observed in the gonads of the recipient chicken embryo by fluorescence microscopy. The study comprehensively evaluated the factors of transfection reagents, plasmid dosage and cell number to optimize the transfection of PGCs, thereby providing a foundation for the efficient preparation of transgenic and gene-edited chickens.


Subject(s)
Chickens , Germ Cells , Animals , Animals, Genetically Modified , Chick Embryo , Chickens/genetics , Gonads , Transfection
14.
Aging (Albany NY) ; 12(8): 6733-6755, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32289751

ABSTRACT

Stable transfection manipulation with antibiotic selection and passaging induces progressive cellular senescence phenotypes. However, the underlying mechanisms remain poorly understood. This study demonstrated that stable transfection of the empty vector induced PANC-1 cells into cellular senescence. Metabolomics revealed several acylcarnitines and their upstream regulatory gene, carnitine palmitoyltransferase 1C (CPT1C) involved in fatty acid ß-oxidation in mitochondria, were strikingly decreased in senescent PANC-1 cells. Low CPT1C expression triggered mitochondrial dysfunction, inhibited telomere elongation, impaired cell survival under metabolic stress, and hindered the malignance and tumorigenesis of senescent cells. On the contrary, mitochondrial activity was restored by CPT1C gain-of-function in senescent vector PANC-1 cells. PPARα and TP53/CDKN1A, crucial signaling components in cellular senescence, were downregulated in senescent PANC-1 cells. This study identifies CPT1C as a key regulator of stable transfection-induced progressive PANC-1 cell senescence that inhibits mitochondrial function-associated metabolic reprogramming. These findings confirm the need to identify cell culture alterations after stable transfection, particularly when cells are used for metabolomics and mitochondria-associated studies, and suggest inhibition of CPT1C could be a promising target to intervene pancreatic tumorigenesis.


Subject(s)
Carcinoma/genetics , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cellular Senescence/genetics , Mitochondria/physiology , Pancreatic Neoplasms/genetics , Animals , Carcinogenesis/genetics , Carcinoma/pathology , Carnitine/analogs & derivatives , Carnitine/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Genetic Vectors , Humans , Male , Metabolomics , Mice , Mitochondrial Proteins/genetics , Mitophagy , Neoplasm Transplantation , Nuclear Respiratory Factor 1/genetics , PPAR alpha/genetics , Pancreatic Neoplasms/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Protein Transport/genetics , RNA, Messenger/metabolism , Signal Transduction , Telomere Shortening , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
15.
Infect Immun ; 88(5)2020 04 20.
Article in English | MEDLINE | ID: mdl-32094255

ABSTRACT

Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond.


Subject(s)
Eimeria/genetics , Protozoan Vaccines/genetics , Vaccines, Synthetic/genetics , Animals , Antigens, Protozoan/genetics , Coccidiosis/immunology , Humans , Microorganisms, Genetically-Modified/genetics , Vaccination/methods , Vaccines, Attenuated/genetics
16.
Methods Mol Biol ; 2070: 351-361, 2020.
Article in English | MEDLINE | ID: mdl-31625106

ABSTRACT

Stable mammalian, namely human, suspension cell lines play a pivotal role in red biotechnology production scenarios for the generation of state-of-the-art biologics. However, selection of genetically modified and highly productive cell populations - prior to the establishment of clonal lines - is often challenging. To overcome this limitation, we first describe an optimized transient transfection protocol using the inexpensive reagent polyethylenimine (PEI) and human 293F cells. Transposon donor vectors derived from Sleeping Beauty encompassing a cassette with the reporter gene encoding for the green fluorescent protein (GFP) coupled with an internal ribosome entry site (IRES) to the expression of puromycin-resistance are employed to readily detect transfected cells. Upon stable transfection in the presence and absence of transposase expression, respectively, and subsequent antibiotic selection, GFP expression using flow cytometry analysis, cell viability, and cell density can be examined over a range of up to 3 weeks. Owing to the integration of high vector copy numbers into the target cell genome, transposase-mediated transposition of transposon donor vectors is instrumental in the faster establishment of recombinant cell population as compared to the classical stable transfection of plasmid DNA.


Subject(s)
Clone Cells , DNA Transposable Elements , Gene Transfer Techniques , Genetic Vectors , Genotype , Cell Line , Clone Cells/cytology , Clone Cells/metabolism , Genetic Vectors/chemistry , Genetic Vectors/genetics , Genetic Vectors/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans
17.
Ophthalmic Genet ; 40(5): 428-435, 2019 10.
Article in English | MEDLINE | ID: mdl-31618082

ABSTRACT

Background: Congenital cataract is a significant cause of visual impairment and blindness. The present study examined the disease-causing mutations in three Chinese families with autosomal dominant congenital cataract (ADCC) to provide the preliminary evidence of the mechanisms underlying congenital cataract formation.Methods: Three pedigrees affected with ADCC were recruited. All participants underwent detailed ophthalmic examinations. Leucocyte DNA was extracted from venous blood for direct sequencing of candidate genes. In silico bioinformatics analysis was conducted to verify the functional impacts of the mutant proteins. Distribution patterns of connexin proteins were assessed through fluorescence microscopy using an enhanced green fluorescent protein (EGFP)-labeled expression vector in stably transfected Hek293 cells.Results: We identified three Chinese pedigrees with ADCC. Family 1 and family 2 presented with pulverized cataract and family 3 with an unknown phenotype. Direct sequencing of family 1 and family 2 revealed a missense mutation of c.64G>A encoding for G22S of connexin46 (Cx46), while a similar c.64G>A encoding for G22S of connexin50 (Cx50) was found in family 3; both mutations co-segregated well within all affected individuals in their families and were absent from 100 unrelated controls. Bioinformatics analysis revealed with high confidence that both mutations were deleterious. Confocal microscopy revealed the accumulation of both mutant connexins in the cytoplasm with punctate staining and a failure of gap junction formation between adjacent cells.Conclusions: Two novel G22S mutations of Cx46 and Cx50 were identified, and preliminary functional analysis revealed a potential deleterious effect of these mutations due to the malfunction of connexins.Abbreviations: ADCC: autosomal dominant congenital cataract; Cx26: connexin26; Cx32: connexin32; Cx46: connexin46; Cx46WT: wild-type connexin46; Cx50: Connexin50; Cx50WT: wild-type connexin50; DAPI: 4',6-diamidino-2-phenylindole; EGFP: enhanced green fluorescent protein; FBS: fetal bovine serum; GJA-:gap junction alpha-; PCR: polymerase chain reaction; PolyPhen: polymorphism phenotyping; PSIC: position-specific independent count; RPMI: Roswell Park Memorial Institute; TM1: first transmembrane.


Subject(s)
Asian People/genetics , Cataract/genetics , Connexins/genetics , Eye Proteins/genetics , Gap Junctions/pathology , Mutation , Amino Acid Sequence , Biomarkers/analysis , Case-Control Studies , Cataract/congenital , Cataract/pathology , Child , Child, Preschool , Connexins/chemistry , Connexins/metabolism , Female , Follow-Up Studies , Gap Junctions/genetics , HEK293 Cells , Humans , Infant , Male , Pedigree , Phenotype , Prognosis , Protein Conformation , Sequence Homology
18.
Bioprocess Biosyst Eng ; 42(5): 799-806, 2019 May.
Article in English | MEDLINE | ID: mdl-30730009

ABSTRACT

Stable transfection of mammalian cells using various expression cassettes for exogenous gene expression has been well established. The impact of critical factors in these cassettes, such as promoter and enhancer elements, on recombinant protein production in mammalian cells has been studied extensively to optimize the expression efficiency. However, few studies on the correlation between the strength of selection marker and the expression of gene of interest (GOI) have been reported. Here we investigated the correlation between the strength of a widely used selection marker, glutamine synthetase (GS) gene, and gene of interest in which the expression of GOI is driven by mouse cytomegalovirus (mCMV) major immediate early (MIE) promoter whereas the expression of GS is controlled by SV40E (Simian vacuolating virus 40E) promoter. We used a green fluorescent protein and the adalimumab antibody (heavy and light chain) as two distinct examples for the gene of interest. We then decreased the expression of GS gene by engineering a specific region of its SV40E promoter in these expression cassettes. By comparing the expression of GS and GOI at transcription and translation level before and after the SV40E promoter was weakened, we found that lower GS expression due to weaker SV40E transcription correlated well with the higher expression of recombinant proteins, mainly by increasing the copy number of GS and GOI integration into host cell genome.


Subject(s)
Adalimumab , Gene Expression , Genetic Vectors , Green Fluorescent Proteins , Promoter Regions, Genetic , Transcription, Genetic , Adalimumab/biosynthesis , Adalimumab/genetics , Animals , CHO Cells , Cricetulus , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
19.
Int J Parasitol ; 49(2): 127-137, 2019 02.
Article in English | MEDLINE | ID: mdl-30367864

ABSTRACT

The factors involved in gain or loss of virulence in Babesia bovis are unknown. Spherical body protein 2 truncated copy 11 (sbp2t11) transcripts in B. bovis were recently reported to be a marker of attenuation for B. bovis strains. Increased cytoadhesion of B. bovis-infected red blood cells (iRBC) to vascular endothelial cells is associated with severe disease outcomes and an indicator of parasite virulence. Here, we created a stable B. bovis transfected line over-expressing sbp2t11 to determine whether up-regulation of sbp2t11 is associated with changes in cytoadhesion. This line was designated sbp2t11up and five B. bovis clonal lines were derived from the sbp2t11up line by limiting dilution for characterisation. We compared the ability of iRBCs from the sbp2t11up line and its five derivative clonal lines to adhere to bovine brain endothelial cells, using an in vitro cytoadhesion assay. The same lines were selected for in vitro cytoadhesion and the levels of sbp2t11 transcripts in each selected line were quantified. Our results demonstrate that up-regulation of sbp2t11 is accompanied by a statistically significant reduction in cytoadhesion. Confirmed up-regulation of sbp2t11 in B. bovis concomitant with the reduction of iRBC in vitro cytoadhesion to bovine brain endothelial cell is consistent with our previous finding that up-regulation of sbp2t11 is an attenuation marker in B. bovis and suggests the involvement of sbp2t11 transcription in B. bovis virulence.


Subject(s)
Babesia bovis/physiology , Cell Adhesion , Endothelial Cells/parasitology , Gene Expression , Protozoan Proteins/biosynthesis , Virulence Factors/biosynthesis , Animals , Babesia bovis/genetics , Cattle , Cells, Cultured , Protozoan Proteins/genetics , Virulence Factors/genetics
20.
Toxicol In Vitro ; 52: 52-59, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29870745

ABSTRACT

Zebrafish acetylcholinesterase (zfAChE) preparations employed for the evaluation of acetylcholinesterase inhibition are usually extracted from animal tissues, a procedure suffering from both technical and ethical limitations, which may be alleviated using an in vitro expression system for enzyme generation. For this end, a protocol for stable transfection and selection of zebrafish liver (ZF-L) cells using an adapted expression plasmid "ZF-L Exp" was developed. After insertion of zfAChE cDNA, the enzyme was efficiently expressed in transgenic ZF-L cell lines, which were then used as a high yield source of zfAChE activity for acetylcholinesterase (AChE) inhibition assays. An adapted assay protocol was used to demonstrate the effects of carbaryl, dichlorvos and caffeine as model AChE inhibitors towards zfAChE. Dimethyl sulfoxide (DMSO) was also strongly inhibitory towards zfAChE. Finally, we provide data on the stability of zfAChE enzyme preparations. The novel test system provides a promising in vitro test system for the assessment of zfAChE inhibition.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Zebrafish Proteins/antagonists & inhibitors , Acetylcholinesterase/genetics , Animals , Biological Assay , Caffeine/pharmacology , Carbaryl/pharmacology , Cell Line , DNA, Complementary/genetics , Dichlorvos/pharmacology , Liver/cytology , Transfection , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...